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We report time-resolved x-ray-scattering measurements of the transient structural response of
the sliding Q; charge-density wave (CDW) in NbSes to a reversal of the driving electric field. The
observed time scale characterizing this response at 70 K varies from ~15 msec for driving fields
near threshold to ~2 msec for fields well above threshold. The position and time-dependent strain
of the CDW is analyzed in terms of a phenomenological equation of motion for the phase of the
CDW order parameter. The value of the damping constant, v = (3.2£0.7) x 107'° eV sec A=3 isin
excellent agreement with the value determined from transport measurements. As the driving field
approaches threshold from above, the line shape becomes bimodal, suggesting that the CDW does
not depin throughout the entire sample at one well-defined voltage.

I. INTRODUCTION

The fundamental statistical physics describing sys-
tems which are so far out of equilibrium that the no-
tion of a partition function is not valid is currently
not well understood. Our goal is to study the struc-
tural response of very simple systems as they are driven
between two distinct steady-state configurations, using
time-resolved x-ray scattering. The particular experi-
mental systems we chose to study are the charge-density
waves (CDW’s) found in quasi-one-dimensional metals.
The structure of the pinned CDW state has been mea-
sured at high resolution. Theory and experiment are in
excellent agreement.»»? On the other hand, the dynamics
of CDW systems are less well understood, particularly
the structural aspects. Although a large number of elec-
tronic transport experiments have been performed, the
results of these experiments are difficult to interpret in
terms of microscopic models and time-resolved structural
data are limited and restricted primarily to the Ko 3MO3
system.®*

In order to acquire the data, we developed a time-
resolved, high-resolution x-ray-scattering system capable
of measuring the time-evolution of the structure of the
sliding Q; charge-density wave in NbSez as the direction
of the driving electric field is reversed. We are able to

0163-1829/94/50(12)/8157(9)/806.00 50

interpret our data using an equation of motion for the
phase of the CDW order parameter which pertains at
low temperatures and at large applied fields.

In the next section of this paper, we review the el-
ementary physics describing CDW'’s in one-dimensional
metals and discuss the structure of both stationary and
sliding CDW'’s. In the third section, we review the stan-
dard theory describing x-ray scattering from CDW sys-
tems and develop some of the extensions necessary to
describe evolving systems. We explicitly solve an equa-
tion of motion describing the wave number of the CDW.
In the fourth section, we review the details of our NbSes
samples and our experimental apparatus. In Sec. V, we
present our time-resolved x-ray-scattering data. We con-
clude with a brief discussion of our results and an ap-
pendix of mathematical details.

II. CHARGE-DENSITY WAVES
A. The pinned state

In his 1955 solid state text, Peierls demonstrated that
an ideal one-dimensional metal crystal is unstable to
the formation of a CDW state at low temperatures.® In
the CDW state, the conduction electron density p.(x) is
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given by
p(z) =P+ pecos(Qz + ¢), (1)

where 7 is the mean conduction electron density, Q =
2k is the CDW wave number, p,. is the CDW condensate
density, and ¢ is the phase. In the presence of the lattice-
distortion wave, the position of the jth atom z; is given

by
z; = ja+ usin{Qja + ¢), (2)

where u is the amplitude of the distortion wave and a is
the real space lattice constant of the undistorted lattice.
The conduction-electron-density wave and the lattice-
distortion wave have the same phase ¢. In the literature,
CDW'’s are frequently characterized by a complex order
parameter Ae’®(®), The amplitude A is usually taken
to be the energy gap, which is linearly proportional to
the amplitude of the lattice-distortion wave. The lattice-
distortion wave and the associated conduction-electron-
density wave are collectively referred to as a charge-
density wave.

The properties of CDW systems have been studied ex-
tensively during the past 15 years. A large fraction of
this research has been devoted to studies of the nonlinear
electronic transport exhibited by some CDW systems.®
This nonlinear transport originates in an incommensu-
rate CDW’s ability to slide rigidly through an ideal crys-
tal lattice without friction.” Real materials always con-
tain lattice defects or impurities. These localized defects
have energetic preferences for the phase and tend to “pin”
the CDW in small regions, hence the term “defect pin-
ning.”

Two phenomena are associated with defect pinning.
First, the system can take advantage of the pinning en-
ergy of the defects by elastically distorting the CDW.
This elastic distortion can be described by allowing the
phase ¢ to become a function of position. Clearly, this
positional dependence destroys the long-range periodic-
ity of the CDW state. The phase-phase correlation func-
tion, (ex1)e=ib(x2)) ~ e~Ix1—Xal/é 5 frequently used
to describe this loss of long-range periodicity and is char-
acterized by the length scale £. A large fraction of the
theory of and experiments performed on CDW systems
have been devoted to studying this loss of long-range or-
der. Second, and of particular relevance to this exper-
iment, arbitrarily small fields are no longer capable of
causing the CDW to slide. The CDW remains pinned
until the applied field exceeds a threshold value Ep.8?°
Experimentally, the onset of sliding is signaled by the
presence of a nonohmic contribution to the conductivity
when the current exceeds the threshold current Ir.

B. The sliding state, boundary conditions,
and phase slip

In any experimental realization, electrical contacts are
required to produce the electric field that drives the CDW
into the sliding state. The boundary conditions imposed
by these electrical contacts play a crucial role in de-

termining the structure of the sliding CDW state. To
achieve a steady-state collective current due to the CDW
sliding, current must be injected at one electrode and
extracted at the other. Equivalently, CDW phase fronts
must be added at one electrode and removed at the other.
InFig. 1, the dashed lines indicate lines of constant phase
of the CDW. In the region of the sample between the con-
tacts, the CDW phase fronts are moving when the CDW
is sliding. In the regions of the sample which are outside
the electrical contacts, there is no collective current and
the CDW phase fronts are stationary.

This intuitive picture suggests a simple model for the
current conversion process originally proposed by Gill to
explain the transients observed in his pulsed electronic
transport measurements.’® Consider the contact on the
top of Fig. 1. Before the electric field is applied, the
CDW is uniform. As the electric field is applied, phase
fronts in between the electrodes try to move down, dilat-
ing the CDW near the electrode on the top. This strain
can be relieved by nucleating a dislocation loop, which
quickly grows to be the size of the sample, inserting a new
phase front as it does so. This mechanism of nucleating
new lines of phase is called phase slip.1!

In electronic transport experiments, the phase-slip
mechanism is studied’®'? in a “transposed” configura-
tion. In the “normal” four-probe configuration, current
is injected at the ends of the sample and the voltage is
measured at contacts which are separated by a distance
L. Measurements'®!27%4 find that, for a given Icpw,
there is a difference between the voltage measured in the
normal and transposed configurations. This difference is
characterized by the phase-slip voltage V.

A one-dimensional theory of the steady-state current
conversion process has been developed by Ramakrishna
et al.'%18 In this theory, the dislocation loops are ther-
mally nucleated in the presence of a background strain
field. As in any nucleation and growth problem, loops
above a critical size grow and those below the critical size
collapse.!” The resulting equations of motion for o(z,t)
are linearized and solved for the time-independent com-
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FIG. 1. Schematic illustration of the experimental config-
uration. Normal current is injected and extracted from the
current electrodes. CDW or collective mode conduction takes
place only in the region between the current electrodes.



50 X-RAY-SCATTERING MEASUREMENTS OF THE TRANSIENT . ..

ponent ¢;(z). The steady-state solution to this model
has a parabolic profile and is zero at the electrodes,

_—1(ere 55) 2% — é)z (3)
2K, A2 \ 2kp L 2 )
Here, K, is the CDW elastic constant and z is the dis-
tance from the midpoint between the contacts. The posi-
tional dependence of ¢, creates a positional dependence
of @, the CDW wave number. Using synchrotron-based
high-resolution x-ray-scattering techniques, DiCarlo et
al.'® have observed a position, temperature, and electric
field dependent strain of the sliding Q; CDW in NbSes
consistent with the specific predictions of this model.
The goal of the present experiments is to measure the
time dependence of this strain field as the sign of the
electric field is reversed.

$1(2) =

III. X-RAY SCATTERING FROM CDW’S

X-ray scattering is a nearly ideal probe of the peri-
odic structure of a CDW. In this section, we will review
the standard theory relating the observed x-ray scatter-
ing to the microscopic structure of the CDW. Then, we
will discuss some extensions necessary to describe time-
dependent systems.

A. Kinematic scattering theory

In the kinematic approximation, the scattered in-
tensity measured in an x-ray-scattering experiment is
directly proportional to the spatial Fourier transform
of the equal-time electronic density-density correlation
function?®

S(q,t) o f dx, / dxz ") (p(x1)p(%32)) pyy - (4)

In this expression, q is the scattering vector and p is
the electronic charge density. The angular brackets in-
dicate an ensemble average over all accessible configu-
rations of the system. The subscript P(t) identifies the
time-dependent probability distribution to be used when
taking this average.

At low temperatures, the electronic charge density of
an ideal, monatomic crystal can be approximated by

p(x) = Zm(x -R;), (5)

where p4(x) is the electronic charge density of an iso-
lated atom and {R;} is the set of equilibrium lattice
sites. The sinusoidal lattice distortion associated with
the CDW state can be introduced by letting

R; = R; + usin (Q ‘R; + ¢(R])) (6)

We then proceed to calculate the T' = 0 structure fac-
tor, S(q,t), arriving at the expression2%:2!
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S(q) ~ IF(q)Iz{IJo(q -u)[? Z eI 4 |Jy(q - u)?

i(a£Q)-R; [ i[6(0)-¢(R;)]
x5 (e Y+b

Here, |F(q)|? is the atomic form factor and J,(z) is the
nth order Bessel function and the notation specifying
P(t) has been suppressed. The first sum inside the curly
brackets produces the Bragg peaks associated with the
undistorted crystal lattice. The second sum creates satel-
lite peaks separated by £Q from each Bragg peak. Since
this is still a 7 = 0 model, the angular brackets in this
term indicate an average over different realizations of the
quenched defect distribution. The line shape of the CDW
satellite peaks is given by the spatial Fourier transform
of the equal-time-phase-phase correlation function.

In these measurements, q - u < 1 so we can use small
argument expansions for the Bessel functions to simplify
Eq. (7), producing

S@) ~F@P{3 ™ + d(q-u)? Y DR
i i
x <ei[¢(o)—¢(n,-)1> 4o } (8)

which exhibits both the necessary Bragg peaks and the ¢?
behavior commonly associated with disorder scattering
at the CDW satellite positions.

Note that the x-ray measurements are dominated
by the localized atomic core electrons. These x-ray-
scattering experiments on CDW systems probe the struc-
ture of the lattice-distortion-wave component of the
CDW state. The conduction-electron-density wave plays
only an incidental role in determining the form of the
observed scattering.

B. X-ray-scattering theory for evolving systems

In principle, one would like to analyze the data using
an expression containing the full S(q,¢). Note that, as
defined in Eq. (4), the time dependence of S(q,t) origi-
nates in the time dependence of the probability distribu-
tion P(t). Thus, in a time-dependent measurement, one
is studying the evolution of P(t). Frequently, the Fokker-
Planck equation is used for such studies. Such an analysis
is not out of the question for this system. For example,
the elegant formalism developed to study the kinetics of
first order phase transitions?? might be applied to this
problem. However, the signal to noise ratio of our data
is not yet sufficiently high to warrant such an analysis.
Instead, as in the experiments of DiCarlo et al.,’® we will
only seek to understand the physics describing the evo-
lution of the strain of the CDW as a function of time
and position on the sample. In essence, we will be study-
ing the evolution of the first moment of the probability
distribution, not the full distribution function.

As in the steady-state case,'®'®2® we begin with a

Langevin equation of motion for ¢(r,¢)
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9¢(r,t)
ot

= K,A%(V(r,t)) + ;Z;E(t)

+ Fimp(¢) + ﬂ(r,t)- (9)

Here v is a damping constant, Fimp(¢) is the quenched
random pinning force, and 7(r,t) is the Langevin noise
field. The model of Ref. 15 divides ¢ into two compo-
nents: ¢ = ¢o + ¢1. Here, ¢ represents the solution to
the sliding CDW problem in an infinite sample and ¢; is
a small correction that describes the effects of the cur-
rent contacts and is assumed to vary slowly in time and
space. After substituting the decomposition into Eq. (9),
the resulting equation is averaged over impurities, time,
and space. ac conductivity measurements® on NbSes find
that the natural frequency of the CDW is on the order of
10 MHz. As shown below, the characteristic time scale
for changes in ¢; is on the order of 10~3 sec. Defining
time averages on intervals larger than the period of ¢g
but shorter than the characteristic time of ¢; allows one
to make connection to the experimentally measured V.
In the limit where the driving electric field is far enough
above threshold that the pinning force and the noise term
are both negligible, the resulting equation of motion for
¢ is a simple driven diffusion equation,

01 (z,t) - K A232¢1(zat) &) Vos(t)

LT 22T, <2kF L

(10)

Equation (10) is the time-dependent version of Eq. (8)
in Ref. 15.

We are interested in the solution to Eq. (10) for the
simple case where the sign of the driving field Vj,(t) is
reversed at ¢ = 0 and ¢1(+£) = 0. Laplace trans-
form techniques produce a series solution which converges
rapidly at early times. Conversely, the separation of
variables technique produces a series solution which con-
verges rapidly at late times. The details of the latter
series solution are given in the Appendix. Using the ap-
propriate solution at a given time ¢ we have a convenient
representation of the solution for all times ¢ > 0.

2

IV. EXPERIMENTAL
A. NbSes

We chose to use NbSej for our experiments for a num-
ber of reasons. First, although a large number of ma-
terials are known to exhibit CDW states, the CDW’s
in NbSeg both exhibit sliding mode conduction and
have been extensively studied in electronic transport
measurements.?® Second, we are able to grow crystal-
lographically perfect, single-crystal whiskers of NbSes.
These structural defect-free samples are essential if one
wishes to measure these small strains.'® Third, in NbSes
the Fermi surface is not completely gapped below the
first Peierls transition. The system remains metallic and
the electronic transport is still dominated by the normal
carriers. Consequently, the electric field must remain uni-
form inside the whisker, eliminating spurious polarization
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effects due to poor electrical contacts in regions not too
close to the electrodes. Finally, the technology required
to produce good electrical contacts has been well devel-
oped for NbSes.

On a microscopic level, the crystal structure of NbSes
is monoclinic,?* with lattice constants a = 10.009 A,
b = 3.4805 A, c = 15.629 A, and B = 109.47°. Macro-
scopically, these crystals grow as long whiskers with a
rectangular cross section. The width of a whisker is typ-
ically ten times the thickness. Typical dimensions of a
sample used in our experiments are on the order of 2 ym
X 20 pm x 10 mm. Both the crystallographic b and b*
directions are oriented along the whisker axis. The small-
est macroscopic sample dimension usually corresponds to
the a* direction.

Two independent CDW’s form in NbSez. The Q;
CDW forms at a temperature of Tp, = 145 K and has the
wave vector?® q; = (0 Q; 0), where @ is slightly tem-
perature dependent and approximately equal to 0.243.
The Q2 CDW forms at roughly Tp, = 59 K and has
the wave vector gz = (0.5 Q2 0.5), where Q2 is approxi-
mately equal to 0.263. All of the measurements reported
in this paper were performed at temperatures above Tp,
and below Tp, .

B. Experimental configuration

The x-ray-scattering measurements were performed at
the F2 experimental station at the Cornell High Energy
Synchrotron Source (CHESS). The storage ring was run-
ning at an energy of 5 GeV and the stored positron cur-
rent typically decayed from 80 to 40 mA during a 50
min fill cycle. For the purposes of comparing different
data sets, we have normalized the data to counts per
sec at 100-mA ring current. A Si(111) double-bounce
monochromator selected a wavelength of 1.5 A from the
white x-ray beam produced by the 24-pole wiggler. A flat
Au-coated mirror in the hutch suppressed harmonics of
the fundamental wavelength passed by the monochroma-
tor. The sagittally bent second monochromator crystal
focused the x-ray beam in the out-of-scattering-plane di-
rection at the sample position._Tantalum slits restricted
the x-ray spot size at the sample to approximately 0.8
mm X 3 mm. The resulting x-ray beam contained 4x10°
x rays/sec/100 mA of stored positron current. The scat-
tered x rays were analyzed by a triple-bounce channel-cut
Si(111) crystal and detected by a standard Nal(T1) scin-
tillator and photomultiplier tube.

The NbSez whiskers were mounted across a 4-mm hole
in an alumina substrate using silver paint, which also
provided the electrical contacts. The distance between
the electrical contacts was L = 5 mm. In these measure-
ments the sample was oriented such that the length of
the sample in the beam was 0.8 mm, centered at roughly
the g position between the contacts.

To study the transient structural response of the CDW,
we made a stroboscopic measurement.?® The CDW is
subjected to a continuous square wave voltage wave form.
The half period of the square wave is divided into time in-
tervals of equal size. X rays detected during a particular
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time interval are summed over a large number of square
wave periods. Typical count rates at the CDW satellite
were on the order of 50 counts/sec at 100 mA of ring cur-
rent. Therefore, in order to obtain reasonable counting
statistics in a 4 msec wide time bin, we sum over roughly
10000 voltage wave form cycles. Transient structural ef-
fects due to Ohmic heating of the sample were eliminated
by switching only the direction of a constant magnitude
current, thus keeping the Ohmic heating constant. Time-
resolved measurements of the (0 2 0) Bragg peak as the
current direction is switched do not exhibit any measur-
able change, ruling out transients due to changes in the
lattice (e.g., a strain of the lattice due to a bend of the
whisker driven by the electric field).

All the data presented in this paper were taken on the
[0 1+ Q. 0] CDW satellite. The [0 + (1 + Q;) 0] CDW
satellites are particularly attractive for high-resolution
work because they are nearly nondispersive for Si(111)
monochromator-analyzer optics and because the (0 1 0)
structure factor is zero in NbSes, eliminating any diffuse
background from the 51; tail of the Bragg peak. The mea-
sured g-space resolution (full width at half maximum)
of our diffractometer in this region of reciprocal space
was 8g; = 7.6 x 1075 A~1, 8¢, = 2.7 x 10~% A~1, and
8gq, ~1x1072 A-1,

V. EXPERIMENTAL RESULTS
A. Data

All of the data shown in the figures were taken at 70
K. Using the standard technique, the depinning current
was measured by using a lock-in amplifier to measure
the differential resistance as a function of current. At 90
K, Iz = 10 3 1 mA. Based on this measurement, we
estimate®” that at 70 K, Iz = 20 + 3 mA.

Figure 2 illustrates a typical data set: the observed
intensity I(g,t) is plotted as a two-dimensional surface.
The same data set is also shown in Fig. 3 as a contour
plot. The evolution of the CDW satellite as the system

is driven by the voltage wave form shown in the inset

FIG. 2. Scattered intensity
measured near the CDW satel-
lite as a function of the scat-
tering vector [0 @ 0] and time
t plotted as a two-dimensional
surface. This data set was
taken at a temperature of
70 K and current of 21 mA.
Ir = 20 £ 3 mA. The signal
wave form, shown in the inset
to Fig. 3, switches polarity at
0 and 80 msec. The time bins
are each 8 msec wide.

is clearly visible in either figure. The solid lines in Fig.
3 are contours of constant scattered intensity. The con-
tours are separated by 30 counts/sec at 100 mA. The
magnitude of the driving current wave form in this case
was 21 mA, slightly greater than the threshold current,
Iy ~ 20 mA. After the current direction is switched, a
slow shift in the position of the CDW satellite is visible
with a time scale on the order of a few msec. The pe-
riod of the driving wave form is chosen so that the CDW
satellite peak stabilizes at its steady-state position before
the next switch in the direction of the current.

Close inspection of Figs. 2 and 3 reveals that the
satellite peak does not have the same shape or width for
the different current directions. The data exhibit several
other asymmetric features. In particular, the position

1.2425 T T T
" Driving Wave form
ZE a1y
1.2420 § 0 J I b
-21
T 10
- 1.2415 _ Time (msec) -
)
k=l

1.2410 ] .-

1.2405

12400, 40 80 120 160
Time (msec)

FIG. 3. A contour plot of the same data shown in Fig. 2.
The contours are lines of constant scattered intensity. Neigh-
boring contours differ by 30 counts/sec at 100 mA. The high-
est contour represents a total accumulation of 300 counts in a
time bin. The signal wave form, shown in the inset, switches
polarity at 0 and 80 msec. The time bins are each 8 msec
wide.
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and width of the line shape of the zero-field cooled state
differ from those of the pinned state which a sliding CDW
relaxes into after the driving field is removed. The details
of these asymmetries are also position dependent. The
asymmetry of the line shape of the driven sliding state
is more clearly seen at lower driving fields. For example,
Fig. 4 shows a series of longitudinal scans through the
CDW satellite from different time intervals as the current
direction is switched. These data were taken at 70 K and
with a driving current of 17 mA. Each scan is offset by
35 counts/sec at 100 mA for clarity. The top and bottom
scans represent the steady state for the two current direc-
tions. The remaining scans show that the CDW satellite
peak evolves from a single peak to a bimodal line shape.
Data sets taken with higher driving current magnitudes
exhibited the same systematic structure. In general, as
the driving current magnitude was increased, the area
under the stationary peak decreased. At 29 mA, the sta-
tionary peak is no longer measurable. The width of the
moving peak is slightly broader in the transient regions.

To characterize the data, we fit to a two-component
line shape. One peak was constrained to have a time-
invariant position, width, and integrated intensity. The
integrated intensity of the second peak was also held con-

cps at 100 mA ring current

1.2406 1.2410 1.2414

laf ()

FIG. 4. A succession of (0 Q 0) reciprocal space scans taken
from different time slices of a data set taken at 17 mA. Each
time bin is 0.004 sec wide. The centers of the time bins,
measured from the rising edge of the driving wave form, are
0.014, 0.030, 0.050, 0.062, and 0.078 sec. Successive scans
are displaced by 35 counts/sec at 100 mA. The solid lines are
the best fit to the sum of two pseudo-Voigt functions, one
stationary and the other moving.

1.2418 1.2422
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stant, but the position and width were allowed to vary
with time. Empirically, each of the peaks is well de-
scribed by a pseudo-Voigt line shape.2’ The solid lines
shown in Fig. 4 represent fits to the sum of two pseudo-
Voigt functions. The values of x? for the fits were be-
tween 1 and 4 where we have assumed that the errors are
due to counting statistics.

Figure 5 displays the fraction of the total integrated
intensity under the stationary peak as a function of the
magnitude of the driving current. The fraction of the
sample which remains pinned decreases monotonically as
the current is raised. At a current magnitude of 29 mA,
this fraction drops to zero. Due to systematic changes in
the scattering geometry as the diffractometer was raised
and lowered in order to vary z, we cannot directly com-
pare the intensities observed in different sets.

Figure 6 shows the difference in position of the sliding
and pinned peaks as a function of time for one complete
period of the driving current wave form. The particular
data set shown was taken at a current of 29 mA but is
representative of the data taken at all currents. Error
bars represent standard fitting errors.3°

B. Analysis and discussion

A simple interpretation of these data is that at driving
fields near the threshold to sliding the CDW breaks into
domains. Although a collective current is flowing, some
portions of the sample remain unstrained and hence are
presumed to be pinned. One possible explanation of the
physics is that near an impurity site, the applied electric
field may be insufficient to cause the CDW to slide. The
same singularity in the dielectric function, e(q,w = 0),
which drives the CDW phase transition also causes the
system to respond to a point impurity by creating a local-
ized electronic state®! with wave number Q = 2kp. In-
deed, this second effect is the origin of impurity pinning.

0.75 T T T

0.50 b
0.25 % 1

0 . .
10 15 20 25 30
I (mA)

Fraction of Intensity in Fixed Peak

FIG. 5. The ratio of the area under the stationary peak
to the total area under the peaks is plotted as a function
of current at 70 K. These areas are determined using the
two-component pseudo-Voigt line shape demonstrated in Fig.
4. The error bars represent standard fitting errors.
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FIG. 6. Positions of the moving peak are shown for a data
set taken at a current of 29 mA (Iz = 20 £ 3 mA). The solid
lines are the best fit to Eq. (11) in the text.

However, the pinned portions of the sample should not
exhibit the time-dependent strain of the sliding portions.
Our measurements support this picture. Near threshold,
we observe significant broadening of the CDW satellite
peak in the a* direction. In the b* direction, the peak
width is roughly 25% greater in the sliding state than
in the zero-field cooled state. Further measurements at
various temperatures, driving voltages, and wave forms
are required to determine these length scales accurately.
The observation that increasing the current reduces the
area under the stationary peak provides further support
for this picture of locally pinned regions since at large
enough fields (currents), the whole sample should be in
the sliding state. In this scenario, the depinning cur-
rent measured using the lock-in amplifier cannot be in-
terpreted simply as the single current at which the CDW
is depinned over the entire crystal. Rather, our data
suggest a picture which is somewhat reminiscent of per-
colation.

Quantitative analysis of these time-dependent strain
results is somewhat problematic. Specifically, Eq. (10)
applies only at driving fields well above threshold. The
highest current at which we were able to obtain data was
on the order of 1.5Iy7. The model specifically predicts
that the time constants for different directions should be
the same; yet, the data are clearly asymmetric. Further-
more, there are not enough time bins in the transition
region to make a reliable test of Eq. (10) and hence the
model.

On the other hand, these data are sufficient to demon-
strate that x-ray measurements produce results which
are consistent with electronic transport measurements.
To characterize quantitatively the time scales of the ob-
served transients, we fit the relative peak positions to

Q(z,8) = Qo £ 6Q (2e_t/7'° - 1) sin (7;—”) . (1)

where 79 = ;,—é’;;’%;. This equation describing the tran-
sient structural response is the derivative of Eq. (A8) in

the Appendix. The solid line in Fig. (6) is the best fit
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to Eq. (11). The amplitude, 6Q, and the nominal zero-
field value Qg were forced to be consistent for the current
switch in both directions but the time constant 7, was
allowed to differ. For the I = 29 mA data set shown in
Fig. 6, the time constant 7o obtained for the switch to
larger values of @Q was 2.6 £ 0.4 msec and for the switch
to smaller values of Q was 4.7 £ 0.7 msec. Using the lat-
ter value of 79, Eq. (A9) and K,A? = (1.7+0.25) x 10~2
eV A~118 the value of v becomes (3.2 £0.7) x 10719 eV
sec A73,

This value of 4 can be compared directly to the value
~ obtained from the high-field CDW conductance using

the relation
pce 2 1
= R 12
7 (2kF) oCDW (12)

Using the values ocpw = 2 X 10° Q7 1m™! and p. =
3.8 x 102" m—3 appropriate for NbSez, we find that v =
5.7 x 1071° eVsec A3, in excellent agreement with the
x-ray estimate.

The time constants obtained as a function of driving
current amplitude are shown in Fig. 7. Error bars again
represent standard fitting errors. For current magnitudes
> 17 mA there is 2 monotonic decrease in 19 as the cur-
rent magnitude increases. For I = 14 mA, however, there
is a jump to shorter time scales, comparable to those ob-
served at 29 mA. Similarly, the magnitude of the strain is
much smaller. We do not have an explanation for this be-
havior but observe that this jump occurs at roughly the
depinning current. It is possible that at currents below
the depinning current, the CDW is “sloshing” back and
forth slightly as hypothesized by Feinberg and Freidel.32

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a time-resolved high-
resolution x-ray-scattering system capable of measuring

20 T v T
o to low QI
o to high {QI
15} 1
iy
&
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5t % % 7
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0 - 1 L 1
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FIG. 7. The characteristic time constants 7o derived from
fits such as those shown in Fig. 6 are shown as a function
of current. Empirically, the time constants to approach the
different current directions are not the same. For I > 20
mA, the values of 79 decrease monotonically with increasing

current.
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the transient structural response of a simple quasi-one-
dimensional CDW system as it is driven between two dis-
tinct steady-state configurations. We find that a simple
Langevin equation of motion for the phase of the CDW,
which is based on the notion of a background strain which
is driving the nucleation of dislocation loops, gives a value
of the phenomenological damping constant v for the Q;
CDW in NbSe; of (3.2 £0.7) x 10~1°eVsec A~3. This
value of v is in excellent agreement with the value ob-
tained from electronic transport experiments. As the
driving field approaches threshold from above, the line
shape becomes bimodal and the area under the station-
ary component of the line shape increases monotonically.
This suggests that the CDW did not depin throughout
the entire sample at one well-defined voltage. Clearly,
much more work needs to be done. In particular, ex-
periments addressing the asymmetry in the response of
the sample and simultaneous electronic transport mea-
surements need to be performed. However, these prelim-
inary x-ray measurements demonstrate the potential of
" the technique for studying kinetics in CDW systems.
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APPENDIX

A series solution to Eq. (10) can be obtained by per-
forming a solution similar to a separation of variables
calculation. Equation (10) has the generic form

$e = a’¢.; + w(z, ). (A1)
We begin by assuming a series solution of the form

bi(t) =3 an(t)cos (M) ,

n=0

(A2)

which both spans the space of functions for _!21 <z< %

and satisfies the boundary conditions. This solution hap-
pens, in this special case, to have the form of a conven-
tional Fourier series.

Substituting this series solution into Eq. (A1) leads to
an ordinary differential equation in a,(t),

2,2
al(t) = —a® (_________(271, _;;) “

where wy, (t) is the coefficient of the expansion of the driv-
ing function w(z,t), i.e.,

) an(t) + wa(t), (A3)

w(z,t) = 211;,,(0 cos (@) L (A9
The solution of Eq. (A3) is
an(t) = exp [ - ELE T
([l
xwn (7)dr + cn}. (A5)

To determine the constants of integration c,, we now use

the fact that ¢(z,0) = f(z), i.e.,

£le) = Zanm) oon (2 L2

so that the ¢, = o,(0) are simply the expansion co-
efficients of the initial state ¢(z,0). For our problem,

w(z,t) = (glaz —2‘5{:—;;) (Yﬁ) and the initial state is

given by Eq. (3). Therefore,

_ (L) (e VasL(=D)"
=T\ \K,A? ) \2kr ) T@n+ 13

Thus, using these {c,}, the solution for ¢;(z,t) is

(A6)

(A7)

n=0
~ ¢y (26""/"° - 1) cos (%) , (A8)
where
LZ
Tp = 7 (A9)

(2n + 1)2n2K,AZ"
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