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ABSTRACT: The structures of a poly(isopreb&ckethylene oxide) (Pb-PEO) block copolymer-directed
aluminosilicate mesostructure and the resulting ceramic material obtained from calcination were studied via small-
angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The PI minority phase (volume
fraction 0.36) formed a continuous network of channels, previously regéitede consistent with the plumber’s
nightmaré morphology. The solvent casting process used to form the material caused it to shrink uniaxially by
~30%, deforming the network structure within it. Calculated structure factors for constant-curvature and constant-
thickness models of a distorted double gyroid structure are consistent with SAXS from the material, while [100]
and [111] projections of the distorted double gyroid structure match the TEM data. Because the structural data
from the material is most consistent with a distorted version of the double gyroid morphology, the previous
assignment of the plumber’s nightmare morphology must be reconsidered. Approaches for structural assignment
are also discussed.

Introduction

A number of bicontinuous network structures have been
identified in soft-condensed matter systems including the double
gyroid*® (G), double diamorf (D), plumber's nightmare®
(P), and I-WP-8 morphologies illustrated in Figure 1. Identifica-
tion of these complex structures can be challen§iagd a
combination of characterization techniques is frequently re-
quired. Many bicontinuous materials lack long-range periodic-
ity1911and single-crystal specimens are certainly the exception.
Space-group assignment is difficult when dynamic and static
disorder smear out all but a handful of diffraction peéRs.
Furthermore, some 2-D projections of different network struc-
tures are quite similar in appearariéet* Consequently, in some
instances further study of a material has led to a revision of an
earlier structural assignmekit1516

This report describes such a re-evaluation for a solvent-cast
poly(isopreneslockethylene oxide) (Pb-PEO) copolymer/
aluminosilicate composite material and the resulting ceramic
obtained from calcination. The thickness of the solvent-cast film
was approximately 0-51.0 mm while the volume fraction of
the PI minority phase was 0.36. In an earlier st&dgome of
us reported the material’s structure to be consistent with the Figure 1. Unit cells of the (a) double gyroid (G) structure, space group
plumber’s nightmare (P) morphology and excluded the double 1a3d, Q> (b) double diamond (D) structur®n3m, Q?%* (c) plumber’s
gyroid (G) structure because small-angle X-ray scattering hightmare (P) structurdm3m, Q?* and (d) I-WP network structure,

: Im3m, @?*. The green IPMS divides space between the gold and blue
(SAXS) from the material showed11G and {200 Bragg skeletal frames, each of which forms a continuous network in all three

reflections forbidden by the symmetries of the double gyroid spatial directions. Skeletal frames and IPMS were calculated using the
structure (G, space group3d, Q*%9.17 However, the solvent-  level-set approximatioff

casting process uniaxially compressed the film along the film
normal by~30%, as illustrated in Figure 2. Compression of a

cubic lattice breaks the screw-axis and glide-plane symmetries

of the la3d space-group anfl11G and{200C}; reflections are
no longer forbiddeA®1® Thus, the observation df11G and
{200 reflections does not rigorously exclude a double gyroid
) ) . structure distorted by lattice compression (distorted-G).
TSg:)r:rstﬁ%”n‘f'g?;‘ﬁ;@?cré.'z'ma"' smg26@cornell.edu. To determine if a distorted double gyroid (distorted-G)
* Present addresses: Merck Research Laboratories, WYN-2, 466 DevonStructure was consistent with the experimental data, the structural
Park Drive, Wayne, PA 19087 (A.C.F.); Lanxess Deutschland GmbH, deformations caused by lattice contraction were calculated for

G%%‘g:aﬁr}je'n‘t‘?ﬁa?e‘)rirg?sgsec?ér%eerg‘ﬁg)&%;Jé)é fing models of the double gyroid structure with elastig{@onstant-
I Cornell High Energy Synchrotron Source (CHESS). thickne§§° (Ger), and constant-curvatii® (ch) material
U Max-Planck-Institute for Polymer Research. properties. Structure factors for these three distorted double
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Figure 3. (a) Representative 2-D SAXS pattern (calcined material).

The bright{ 211} Bragg reflections lie on the ellipse marked in black.

The ellipse radii ar@ma = 0.572+ 0.007 nm* and gmin = 0.390+

Figure 2. Effect of sample contraction on reciprocal space structure. 0.005 nnt! while the angle between the sample rotation axis (vertical)

(a) Ideal isotropic case. The orientation of three crystallites in a film is and the semi-major axis &= 61.3 £ 2.5°. (b) Pseudo-powder average

illustrated below, while the position of the correspondifgll obtained by integration of a rotation series as described in the text

reflections in reciprocal space is marked above in the same color. For (calcined material). The dotted lines indicate even valud® ef k? +

a given value ofh? + k% + 12, all reflections lie on the surface of a 12 for a cubic lattice with unit cell size of = 39.2+ 0.8 nm.

sphere. (b) Following uniaxial contraction of the film, the unit cell of

individual crystallites also contracts along the film normal. The the surrounding scattering intensityg,0), to a Gaussian peak
reciprocal lattice becomes elongated and reflections with a given value profile of the form

of h? + k2 + 12 lie on the surface of a prolate spheroid, as shown for

the {211} reflections. (c) Intersection of the Ewald sphere and the

prolate spheroid of thghkl} Bragg reflections. (d) Elliptical shape of I(q,0) = B + Iy

the resulting diffraction rings. (27[)3/29 2(q 24 q z)qw X
w \Mw 0

gyroid models were calculated and the intensity §a10}, —(q-—- qo)2 —(0 — 00)2
{200}, and other reflections agree well with SAXS from the ex 2q. 2 29,2
material. [100] and [111] projections of a distorted double gyroid G w
structure were also calculated and resemble transmission eIectroQN herel. is the intearated scattering intensitw.and 6. are the
microscopy (TEM) micrographs from the material. Thus, a o 9 9 % 0

distorted double gyroid structure is consistent with the structural trﬁg'?;;g? ;nnc?lgr?r uﬁgfl\t/:/(i)gtr? fo':chtig)eael;i: e;ﬁgﬁgg&"{;}[ﬁr
data from the material, and the previous assignment of a 9 peak,

I ) the background scattering level. Structure factors were roughly
plumber's nightmare (P) morphology must be re-evaluated. estimated by averaging the intensity per spot for each set of

reflections{hkl}, and the results of this procedure are reported
in Table 1. However, the small number of crystallites, differ-
Experimental Structure Factors. As reported earliet SAXS ences in the size of individual crystallites, and differences in
data was gathered from both the initial RPEO/aluminosilicate how close each crystallite is to the Bragg diffraction condition
films (as-made) and from mesoporous aluminosilicate (calcined) make these estimates quite imprecise.
produced by calcining these films. A representative 2-D SAXS  These problems were addressed using a rotation series in
pattern is shown in Figure 3a. Distinct Bragg spots are seen inwhich the sample was rotated to different angles about an axis
Figure 3a because the crystallites were quite faegel so for perpendicular to the incident beam and SAXS images were taken
any given orientation of the sample, only a small numbes)( at each position. To combine data taken at different rotation
of crystallites satisfied the Bragg diffraction condition. As shown angles, the effect of rotation on the elliptical scattering ring shape
in Figure 2, uniaxial contraction of the film during the solvent was accounted for. Figure 2 illustrates how contraction along
casting process caused the Bragg spots to lie on ellipses rathean axis in real space causes an elongation along the same axis
than circles2?! These ellipses would be smeared out by a in reciprocal space so tHékl} lattice vectors lie on the surface
conventional azimuthal powder average so structure factors mustof a prolate spheroid.On a 2-D SAXS pattern, the observed
be estimated by other techniques. For an individual image, the { hkl} reflections are located at the intersection of this spheroid
intensity of individual Bragg spots were estimated by fitting with the Ewald sphere as shown in Figure 2c,d.

Results
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Table 1. Experimental Structure Factors |Sn|?

as-made calcined
2+ k+12  {hkl} spotd  powdeP  spotg powdep
2 110 04() 03:01 13(6) 15:01
4 200 8.0 (2) 56t 2 6.1(2) 28+ 1
6 211 100 (14) 100 100 (22) 100
8 220 16 (6) 8.1 0.7 12(6) 17+ 1
10 310 nd (0) 0.0 nd (0) 0.0
12 222 nd (0) 0.0 nd (0) 0.0
14 321 168 nd 3208 0x01
16 400 1.0(2) nd 3.0(2) 1804
18 330/411 nd (0) nd nd (0) 0.340.06
20 420 nd (0) nd 27(4) 0zx0.1
22 332 0.9(10) nd 47(12) 2804
24 422 032 nd 1.7(4) 1201
26 431 nd (0) nd 1.2(2) 0.29 0.04

a Average Bragg spot intensity normalized {811} reflections. The
number of spots for eadhkl} is given in parentheses. For softel}, no
reflections were observed as indicated by the letters “Agit to “pseudo-
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wherelj andmy are the intensity and multiplicity of the= h?
+ k2 + 12 scattering peaky is the Voigt functioré223 g g, 611,
oo, andog; describe the width of each scattering peak, Bad
are coefficients describing background scatter. The resulting
peak intensities for as-made and calcined materials are reported
in Table 1. The{20G reflections show the largest difference
between the pseudo-powder average and Bragg spot estimates,
but this is not surprising given the small number of Bragg spots
(N=2).

For both the as-made and calcined material, {241
reflections have the greatest intensity followed by the intermedi-

powder” average of scattering intensity made by summing scattering from ate intensity of th¢ 220 and{200} reflections while th§ 110

a rotation series. The quoted errors are for the nonlinear least-squares fit

and do not include systematic effects. The lower signal-to-noise for the
uncalcined sample meant that reflections with langet k2 + 12 > 12
could not be reliably distinguished above the background scattering level
as indicated by the letters “nd”.

The elliptical shape of the scattering ring is related to the
contraction of the sample by

qmin
qmaj

() = 1—( )2=¢(2s—s2)(1—sin2(en) sir(,)

O#,) = arctan(tang,)cose,))

wheree is the ellipse eccentricityje is the angle between the
y-axis and the ellipse semi-major axigyi, and gmax are the
semi-minor and semi-major ellipse rad§,is the fractional
contraction of the filmg, is the angle between the contraction
axis and the-axis, andgy is the angle between theaxis and
the projection of the contraction axis in thke-z plane. The

scattering ring has the greatest eccentricity when the X-ray beam

is perpendicular to the sample normé} & 0° and/or¢, = 0°)
and is circular when the X-ray beam is parallel to the sample
normal @n = ¢n = 90°). As described previousR,these

reflections are relatively weak.

Model Structure Factors. The double gyroid* double
diamond’ and I-WP5 structures have all previously been
observed in bicontinuous silica-type materials. Table 2 reports
structure factors for double gyroid (G), double diamond (D),
plumber’s nightmare (P), and I-WP structures calculated using
the parametric equations of Garstecki and Hot§sSthere are
distinct differences between the structure factors of the material
and each of these models.

The double diamond (D) structure (Figure 1b) has strong
{113 and{111} reflections and weak211} reflections. As
the material had weakl11GQ} reflections, no{111} reflections
and strond 211} reflections, the double diamond morphology
is quite unlikely. The main discrepancies for the I-WP structure
(Figure 1d) are its weaK211l} reflections, strong{11G
reflections, and relatively strong310 and{222 reflections.
The structure factors in Table 2 are for the most likely I-WP
structure in which the minority Pl phase (volume fraction 36%)
occupies the network of 4-way nodes (gold). Structures with
the minority phase in the network of 8-way nodes (blue), both
networks, or the matrix show no better agreenténthe
plumber’s nightmare (P) structure (Figure 1c) has stiatif}
reflections because the 6-way nodes are located at the corner
and center of the unit cell. Thus, the plumber’s nightmare
morphology also has difficulty accounting for the experimental

equations were fitted to the shape of scattering rings in a rotation yata because the obsenfed @ reflections were weak. Finally,

series to determine the size of the unit cell and magnitude of
uniaxial contraction. The as-made material had a unit cedl of
= 63.3+ 1.0 nm and a contraction o = 30% + 3%.
Following calcination, the unit cell reduced o= 39.2+ 0.8

nm while the contraction was = 33.7%+ 1.3%. The mean
value of the{hkl} reflections was calculated by averaging the
scattering intensity on the surface of prolate spheroidal shells.
The result of this process was a pseudo-powder average

*(0,9)(L — 9singdod
(@)= f I(q9(0,¢),0,¢)xg( )( 4;)S|n b
0.9

9(0.4) = (1 — €(¢)cos(¢— 0¢)) *

a cubic double gyroid (G) structure (Figure 1a) cannot account
for the observed{110; and {211} reflections as these are
forbidden by the symmetries of tHa3d space group’

Comparison to these cubic structures can be misleading,
though, because the crystallites in the material were triclinic.
Each triclinic crystallite was related to a cubic lattice by a
uniaxial contraction/expansion, but the compressed unit cell
could not have all of the crystallographic symmetries allowed
in a cubic unit cell®1® However, depending on how the
contraction affected the structure inside the unit cell, the triclinic
crystallites could still have the same structure factors as a
symmetric, cubic structure. This effect is illustrated in Figure 4
for a 2-D structure with a 4-fold rotational symmetry axis. If
the gray and white domains compress proportionately (linear/
affine transformation) as shown in Figure 4b, the structure

where the average was taken over the surface of a spheroidiactors are effectively unchanged, even though the rotational
rather than a sphere. Rotation series were used to eva(uate  symmetry is broken by the unit cell contraction. In contrast,
and a plot for the calcined material is shown in Figure 3b. The the unit cells in parts ¢ and d of Figure 4 have different structure
intensity of scattering peaks was determined by fitting the 1-D factors because the white and gray domains have changed shape
scattering profile via nonlinear least-squares to the form, relative to the lattice. Thus, a contracted or stretched lattice only
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Table 2. Structure Factors |Sn|? for Model Network Structures

Macromolecules

h?+ k2 + 12 Dab pa -wp2 Ga Geed Geced Gerfd as-made calcined
2 100 100 42 — 0.43 28 23 0.3t 0.1 1.54+0.1
3 71 —h - - - - - 0.0 0.0
4 6.5 89 100 - 1.0 95 96 56+ 2 28+ 1
6 1.3 22 1.4 100 100 100 100 100 100
8 0.0 0.0 5.3 38 41 26 77 84 0.7 17+ 1
9 0.31 - - - - - - 0 0.0
10 0.47 0.05 8.6 - 0.08 1.2 7.6 0 0.0
12 3.0 0.06 2.5 - 0.0 0.1 0.9 0 0.0
14 0.48 1.4 0.18 0.21 0.21 0.9 3.2 nd &0.1
16 0.0 1.1 0.62 0.95 0.92 5.0 2.4 nd 8.4
17 2.1 — — — — — — nd 0.0
18 0.57 1.95 0.45 0.08 2.0 1.5 nd 0.840.06
19 1.8 - - - - - - nd 0.0
20 0.0 0.0 1.3 0.06 0.24 2.4 0.7 nd G:/0.1
22 1.6 4.0 0.26 0.07 1.1 3.9 0.8 nd 2:80.4
24 0.0 3.35 0.03 0.23 0.63 1.8 0.5 nd D1
26 0.0 0.0 0.66 0.18 0.32 1.6 0.3 nd 029.04

aNormalized values ofSy|? for the double diamond (D), plumber’s nightmare (P), I-WP, and double gyroid (G) models were calculated using the
parametric functions of Garstecki and Hol§&&or the double gyroid (G), double diamond (D), and plumber’s nightmare (P) structures the volume of both
networks was 18%. For the I-WP structure, the volume of the 4-fold network wasSBB&. intensity of thd 311} and{421} reflections of the D structure
were below 0.1% of the intensity of tH211} reflections.c Elastic model of the double gyroid structuree(}Gollowing 30% uniaxial contraction. The
majority phase (PEO/aluminosilicate) was taken to be 10 times stiffer than the minority phase (Pl), and Poisson’s ratio for both phases was 0. The PEO/
aluminosilicate had a dens#fyof 1.4 g/cn¥, while the P1 domairf§ had a density of 0.9 g/cin® S.|?Oaveraged for contraction along the [100], [110],
[111], and [16,9,% directions.e Constant curvature model of double gyroid structuredi@nder 30% uniaxial compressionConstant thickness model of
double gyroid structure (&) under 30% uniaxial compressichExperimental values determined using pseudo-powder average as reported in Table 1.
h«—"indicates forbidden by crystallographic symmetry.

the 1a3d lattice despite a uniaxial compression-e15%. In a
more recent study of a double gyroid (G) mesoporous silica
film, the as-made structure did not show the forbidg&aC}

or {200 reflections (~7% contraction). However, calcination
caused the film to contract by40% and weak11G reflections
were then observed.

To see if a distorted double gyroid (distorted-G) structure is
consistent with the structure factors of the material studied here,
the structural deformations caused by lattice contraction were
calculated for several models. The rheological properties of this
block copolymer/aluminosilicate material varied during the
solvent casting proced2Initially, when the solvent content was
_/ & high, the material should have been able to flow in response to
applied stress. As the solvent content dropped, the Pl and PEO/

© aluminosilicate phases separated to form three-dimensional,
interpenetrating networks. Even though the individual polymer
—~ - _\ /. blocks and aluminosilicate particles could still move within their
respective domains, in this liquid crystalline state the domain
Figure 4. Structural change induced by uniaxial contraction. When topology could not readily change and the bulk material should
the circular minority phase (white) and surrounding majority phase have exhibited a solidlike response to applied stfésnally,
(gray) compress equally (b), the structure factors are essentially identical - - I .
to those of the uncompressed structure (a). For an elastic material in@S the number of cross-links between aluminosilicate particles
which the majority phase is less compressible, the circular domains increased, the PEO and Pl polymer blocks would have been
will preferentially flatten as shown in part c. For a liquid crystalline  jmmobilized by the three-dimensional network of covalent
material, the energy of the interface between the majority and minority 4 4s within the PEO/aluminosilicate domains. In this heavily
phase favors domains of constant thickness or constant curvature as . . .
shown in part d. cross-linked state, the response of the material to applied stress
should have been similar to that of an inhomogeneous, elastic

shows symmetry-forbidden reflections if the structure inside the Slid.

unit cell is distorted relative to the crystal lattice. The response of the heavily cross-linked state to an imposed
Consequently, in some cases symmetry-forbidden reflectionsstrain was approximated using an elastic double gyroig) (G

have been observed from block copolymers and mesoporousmodel in which the Pl and PEO/aluminosilicate domains were

silica materials with compressed/stretched double gyroid (G) treated as solids with different elastic moduli. For the intermedi-

structures, while in other cases these reflections were not seenate, liquid crystalline state, constant curvatiréGec) and

For example, Sakurai and colleagues reported the appearanceonstant thickne8832°(Gcr) structural models with the topol-

of {110, and{200 reflections after a double gyroid structure ogy of the double gyroid structure were used to model the

in a poly(styrenep-poly(butadiene)s-poly(styrene) block co- deformation of the Pl and PEO/aluminosilicate domains. As

polymer was plastically deformed under tensiéimn contrast, illustrated in Figures 4c and 4d, contraction during these two

a thin film of bicontinuous silica described by Hayward and stages of the solvent casting process should lead to different

colleague® showed only thg 211} and{220 reflections of types of deformation.

a b
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In an elastic, inhomogeneous material, the spatial dependence
of the material’s elastic properties causes the structure to deform
relative to the crystal lattice. After a contraction, each point,
X, Moves to a new positiorX;(x), given by

Xi(%) = Mjx + XA]m explay X,

whereMj, describes the bulk compression of the material and
the change in structure within the unit cell is described by the
Fourier amplitudesb\jm for reciprocal lattice vectorsy. The
resulting local strain is given By

au(x) = Ao + g — 0= ) cexpla)
1 m
where
m_ 1 mom . Am +5 Mik+ K_s ) . .
&= 2(A] O T A q]'m) (Q|m) 2 ik Figure 5. Deformation of the constant-curvature double gyroidd{G

structure (18% volume) undergoing (a) 0%, (b) 10%, (c) 20%, and (d)
d 30% contraction along the [16,9,4] direction. For clarity, only one of

Assuming the elastic response is locally isotropic, the stress field, o symmetry-related “single gyroid” networks is shown.

Sk(XO, is
— (%) + A(x 5. Because the major and minor domains form interpenetrating
ﬁk(x') zﬂ(x')?nk(n J " (n {0 Jk . three-dimensional networks, the double gyroid (G) structure can
= 2(2# el + A6, )explal; + iqrx) exhibit a solidlike response to applied stf@ssven when the
mn

individual polymer blocks can move within their respective
where u(x) and A(x) are the first and second Lame elastic domains. During the intermediate stages of solvent casting,
coefficient$? at pointx andu™ andA™ are the corresponding  IMPosed strain could have caused relatively large changes in

Fourier coefficients. The elastic energy per unit volume is then domain shape (but not topology) because the aluminosilicate
particles and polymer chains were not fully immobilized by a

mn mon m m n network of covalent bonds within the PEO/aluminosilicate

EHZ (26 € + A" €20(a” + o + o) domains. The optimal domain shapes for a liquid crystal with
P a given unit cell and domain topology can be used to estimate
The equilibrium structure can be rapidly determined by the rearrangements during this stage of solvent casting. As the
conjugate-gradient minimizatidhof this elastic energy. The  energetic interactions of such a hybrid/copolymer system have
Fourier coefficients of the compressed structure are then givennot been quantified, simpler energetic models were employed.
by The shape of domain interfaces in block copolymers has
3 previously been approximated using surfaces of constant

cm _ f Y(x)exp(=ig™™. —1Xk( ) d’ curvature®! Figure 5 illustrates the effects of compressing a
P vP 1k X detM)V single gyroid network bounded by a constant-curvature interface

e

. _ (Gce). As the lattice contracts, each 3-fold connector undergoes
p"" — g zMjk A (o — d) a distinctive distortion and the symmetries of the original
np network are clearly broken. For this calculation, the single gyroid
det(\) network was described with a triangulated surface (2304 facets
per unit cell) and the surface was then numerically optin#zéd

where p®™ and p"™ are the Fourier coefficients for the s as to achieve constant mean curvature under the constraint
compressed and uncompressed structures for the lattice vectopf g network volume of 18%.

qjm. Table 2 reports the structure factors for this elastic double
gyroid (Gs) model. Prior to contraction, the PEO/aluminosilicate factors for this single gyroid network. In the general triclinic

ioma(:n was taken to be alconstant-'ghlckness membr_ane (V0|umqattice, the position of the double gyroid’s second network could
= 64%). Since the elastic properties of the domains change be ambiguous as the glide planes and screw axes of #e Q

during the solvent-casting process, the full range of elastic ,_... . o .
i , - . lattice constrain its position in the cubic case. However, several
moduli consistent with thermodynamics was tested. An upper _. o L A
different criteria for positioning the two networks yield indis-

bound on elastic deformation was estimated by taking the tinguishable structure factors. Figure 6 shows the average value
stiffness of the PEO/aluminosilicate phase to be 10 times that 9 -9 . 9
of the Pl phase. As Poisson’s ratia, had a modest effect on of the {110} and {200} structure factors for this constant-

! curvature double gyroid (§z) model as a function of contraction

structure factors, Table 2 only reports results tor= 0. e
Crystallites in the material had a variety of orientations relative along the, [100], [1_10]’ [111], and [16,9,4] d|rect|ons. The
structure factors rapidly grow as the structure is compressed,

to the strain direction so each structure factd®.q|20) was - )
averaged over uniaxial contractionso# 30% along the [100], ~ @nd their average values for a contractionsof= 30% are
[110], [111], and [16,9,4] directions. ThEl1G and {200 reported in Table 2.

reflections for this elastic double gyroid £} model are Network structures in liquid crystals have also been described
considerably smaller than the measured values. using a membrane of uniform thickness centered on an infinite

~
~

The Abbe transforA? was employed to compute structure
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100 * Table 3. Unit Cell Parameters for Micrographs in Figure 7
.
= * ; minimum
g S0 . e 3 apparent uniaxial
N v . . ) .
S : v projected unit cell unit cell compression
g o ° v g micrograph vectors (nm) size (nm) (%)
€ 10 - 8 8 as-made [111] & =45.%-6.3y
i_ 5ﬁ v =] Figure 7a a,=—15.5+ 35.y 56.2 18
& o as= —29.6- 28.9
v as-made [100] a,=63.8-16.5 65.9 5
v Figure 7b ag=15.0c+ 60.%
1B ) . ) . calcined [111] a; = 26.6x+ 2.0y
5 10 15 20 30 Figure 7c a=-10.%+ 15.5 33.4 33
Percent Compression ) az=—15.%-17.5
Figure 6. {110 and{20G structure factors of a constant curvature 'c:?ézlpeeggloo] Z; gf 3:;7 %/45/ 8.1 5
double gyroid (Gc) structure as a function of uniaxial contraction. ’
Open/closed symbols correspond to the ave{dd€} /{204 structure .
faﬁtors for con};pression a|o,fg the [108%)( [1(10] (E{,,.)?}[lll] %) Table 2 reports the structure factors fqr the constant thlqkness
and [16,9,4] ©,®) directions. Structure factors are normalized$g|? double gyroid (G1) model after averaging over contractions
= 100 in the uncompressed structure. of s= 30% along the [100], [110], [111], and [16,9,4] directions.

As expected, larger structural rearrangements are possible when
material can move within the continuous PI and PEO/alumi-
nosilicate domains. Following a contraction &= 30%, the
structure factors for th€110 and{200 reflections for both
the constant curvature (g and constant thickness ¢g double
gyroid models are considerably larger than the observed values.
While neither the constant-thicknessdfp nor the constant-
curvature (Gc) models capture all the details of the copolymer/
aluminosilicate hybrid energetics, they confirm that large
changes in structure factors can occur without changing the
network topology. In summary, the calculations for the elastic
(Gep), constant-curvature (§g) and constant-thickness (g
double gyroid models indicate that a double gyroid structure
deformed by the solvent-casting process is consistent with the
intensity of the observefi110; and{200 reflections.
Transmission Electron Microscopy. As reported previ-
ously!36 thin sections of the as-made and calcined materials
were examined via bright-field TEM and representative micro-
graphs are shown in Figure 7. Bright areas correspond to the
minor phase (Pl or voids) while dark areas correspond to the
major phase (PEO/aluminosilicate). Despite some distortion of
the lattice from solvent casting or sectioning, the classic fourfold
( [100] direction) and threefold ( [111] direction) orientations
(2a;-ap-25)/3 of a cubic lattice are still evident. The threefold “wagon-wheels”
Figure 7. Bright-Field transmission electron micrographs (PEO- €videntin Figure 7a,c are a common feature of cubic, bicon-
aluminosilicate dark/Pl or voids bright) of the as-made (top) and tinuous structure®

Cak?in?_d matirtiﬁl (bogpm)hhighli%l_?lting the (a,t c) 3-ff0|d anfd (b, hd) 4-fold  Following a uniaxial contraction, the projected lattice vectors
rojections of the cubic phase. The Fourier transform of each image is ; ; ;

ghojwn in the correspond?ng inset. Panel e shows an average of mL?ItipIe(al’ 82 &) Of a cubic lattice are given by
unit cells of the [111] projection of the calcined material shown in

panel c. Stretching the unit cell back to cubic (panel f) restores the
hexagonal symmetry of the [111] projection. The arrows indicate the Ap
in-plane components of the cubic lattice vectas é,, as).

a b

10nm

alx a2>< a3x)

_ 100 B T
2, a, a3y—dx( )x(l sxnn) xR

010

S . whered is the unit cell sizesis the fractional contraction along
periodic minimal surface (IPMS}*2°where the thickness of  an axis,n, andR is a unitary 3x 3 matrix specifying the
the membrane determines its volume fraction. These “constant-orientation of the crystal axes. The unit cell size and minimum

thickness” models are a good approximation for water-rich, uniaxial contraction are then given by
surfactant bilayer network structures and have also been applied

to the structure of block copolymet26 For this constant small
thickness double gyroid (§&) model, the midplane of the d= 4,y and s=1-— 1
membrane was described with a discrete surface (1536 facets big
per unit cell) and the shape of this surface optimized numerically where g and smay are the larger and smaller eigenvalues of
to achieve zero mean curvature for each f4&tThe thickness 0 square matrixd, x Ag'.

of the membrane was then adjusted to give a volume fraction  The Fourier transform of each micrograph was used to
of 64%, and the positions of the inner and outer membrane determine its projected unit lattice vectors and the results are
surfaces were computed. Finally, structure factors were evalu-reported in Table 3. The average lattice sizes (as-ndadeé1

ated by applying Abbe’s transformation to the discrete repre- 4+ 5 nm, calcinedd = 36 & 3 nm) agree with those obtained
sentation of the inner and outer membrane surfates. from SAXS (as-madé = 63.3+ 1.0 nm, calcined = 39.2+
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a The double gyroid structure can also be distinguished in the
[100] projection. Although the [100] projections of all four cubic
network structures (Supporting Information Figure 2) show a
square grid of bright spof$,the spots in the [100] projection

of the double gyroid structure (Figure 9c) are twice as close
together. In the [100] projections of the as-made (Figure 9a)
and calcined (Figure 9b) material, the spot spacing matches the

double gyroid structure.

Discussion

Of the network structures considered in this study, the SAXS
and TEM data are best described by the distorted double gyroid
structure. First, there are significant differences between the
structure factors of the material and structure factors for models
of plumber’s nightmare (P), I-WP, and double diamond (D)
networks. Modest deformations of these structures do not resolve
these differences. In contrast, the observed structure factors are
consistent with a double gyroid (G) structure deformed by
uniaxial contraction. Second, TEMs of the material differ from
[100] and [111] projections of the double diamond, plumber’s
nightmare and I-WP structures. Instead, the TEMs show the
main features of [100] and [111] projections of the double gyroid
structure. Thus, of all the above structures considered, the
distorted double gyroid (distorted-G) structure is most consistent
with the experimental data.

There are several reasons why the conclusions of this analysis
differ from the conclusions of the original repdm. First,
although the contraction of the material during solvent casting
was described, the original analysis assumed the apparent
symmetry of the structure was not altered by the contraction.
On the basis of the present work, this assumption is reasonable
when the contraction is not too large and/or the material deforms
like an elastic solid. However, the large-§0%) contraction
and possibility that the domains were relatively deformable in
the early stages of solvent casting mean that for this material,
symmetry-breaking effects need to be considered. Second,
Figure 9. Averaged unit cells (rectified [100] projection, PEO/ because the elliptical and oligo-crystalline character of the SAXS
aluminosilicate dark) for the (a) as-made and (b) calcined material and was difficult to analyze, quantitative estimates of the material’'s

E:C(l))rrelspogding pr%jtections(Po)f ”t‘e (tC) do%’}'e [%yorg]id ©) Stt.rUCt“][ebat’;]d structure factors were not made in the original analysis. Finally,
plum er's nightmare structure. e projection ot bo . .. . . .

the double gyroid structure and plumber’s nightmare structure form a IN_the original analysis, TEM data were used primarily to
square pattern of bright spots (P phase), but the spots are twice as€sStablish the bicontinuous character of the structure and was

close in the double gyroid structure. Arrows mark taeandas cubic compared to skeletal graphsather than the projected density
lattice vectors. of structural models. Skeletal graphs illustrate the topology of
bicontinuous structures but the corresponding TEM image can
0.8 nm). As shown in Figures 7e and 7f, an average unit cell have quite a different appearance.
could pe ob_tained by summing an array of unit _ceIIs gnd then  gecause the double gyroid (G) structure has numerous
stretching this averaged structure back onto a cubic lattice. Thesesymmetry-forbidden reflections, the identification or exclusion
‘rectified” unit cells are displayed in Figures 8 and 9. To of the double gyroid structure is particularly complicated by
compare these images to structural models, projections of thesymmetry-breaking effects. The present work illustrates the
network structures were evaluated by Fourier summétioh  aqvantages of directly comparing experimental SAXS and TEM
structure.factors obtained using the parametric equations of ata with predictions for a proposed structure. In the past, this
Garstecki and Holyst® was challenging for morphologies like the double gyroid (G)
The [111] projections of the as-made (Figure 8a) and calcined because of their complex three-dimensional structures. However,
(Figure 8b) materials both show bright spots at the corners of using a level set descriptiéhand modern scientific program-
the hexagonal cell. Contrast was better in the calcined material,ming environments (Matlab, Mathematica, IDL, etc.), it is now
and in the calcined unit cell the bright spots appear to be joined straightforward to visualize complex structures and calculate
together at the center of the cell. The [111] projection of the the corresponding SAXS and TEM projectidfigzurthermore,
double gyroid (G) structure (Figure 8c) has both of these Wwith this approach it is easy to examine variations to structures,
features, but projections of the plumber’s nightmare (P) structure such as deformations of the double gyroid. By comparing the
(Figure 8d) or I-WP structure do not. Although a projection of experimental data to predictions for a given structure, consis-

&8 B
ifes

(2a;-a5-a5)/3

Figure 8. Averaged unit cells (rectified [111] projection, PEO/
aluminosilicate dark) for (a) as-made and (b) calcined material and
corresponding projections of the (c) double gyroid (G) structure and
(d) plumber’s nightmare (P) structure. The in-plane components of the
cubic lattice vectorsdy, az, as) are indicated by arrows.

a b

C4

a3

A

a8

a specific half-unit cell of the double diamond (D) structdre
looks similar to the double gyroid, the standard [111] projection
of the full double diamond structure (Supporting Information
Figure 1) also differs from the experimental micrographs.

tency can be directly established.

The original identification of a plumber’s nightmare (P)
structure in this material was surprising since the double gyroid
(G) structure forms in the parent BAPEO copolymer systeff.
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