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We have studied in situ the ordering of a two-dimensional Cu—Cl crystal elec-
trodeposited on a Pt(111) surface. We simultaneously measured high-resolution
time-resolved x-ray scattering and chronoamperometric (current vs. time) tran-
sients. Both measurements were synchronized with the leading edge of an applied
potential step that stimulated the desorption of Cu and subsequent ordering of the
Cu—CI crystal. In all cases, the current transient occurs on a shorter time-scale
than the development of crystalline order. The time-dependent x-ray intensity data
(2 x 10* data points) are well fit by an Avrami-like function with only three pa-
rameters. By performing a series of voltage-step experiments, we demonstrate that
the ordering time diverges with applied potential ¢ as 7 ~ exp[l/(¢ — )], con-
sistent with the nucleation and growth of two-dimensional islands. Monitoring the
time-dependent widths of the x-ray peak, we see a narrowing corresponding to the

growing islands.



BIOGRAPHICAL SKETCH

Adam Craig Finnefrock was born in Long Beach, California in 1970. Before the age
of 18, his family had moved over a dozen times. In spite of this emotional trauma
(or perhaps, because of it) the young preppie left New England to study in Houston,
Texas in 1987. He graduated from Rice University with bachelor degrees in Physics
and Mathematical Sciences in May 1992. He matriculated to Cornell University
and joined Professor Joel Brock’s research group in late 1992. He will be taking a
postdoctoral position with Professor Sol Gruner, where he will attempt to overcome
his crushing ignorance of all things biological. The culpability for his questionable
choice of career resided on his parents’ bookshelves, teeming with optimistic science

fiction from the ’60s and early ’70s.

il



ACKNOWLEDGEMENTS

The results presented in this dissertation would not be possible without the assis-
tance of many people.

First, I have worked in the laboratories of Joel Brock for the past six years.
Alternately serving as teacher, taskmaster, advisor, and friend, he has provided the
motivation and means for all of the work described herein. He has been extremely
generous with his time, and has taught me most of my experimental skills, and what
I know of x-ray scattering.

Professor Abrufia has been my unofficial mentor. A primary collaborator, he has
also given me excellent advice throughout and helped me to find the “larger picture”.
He has also provided courage (and food, occasionally) in the face of hardship, on
and off of the beamline. His advice on the entire academic process was invaluable.

Lisa Buller has been my counterpart in the research group of Professor Abruna.
Her assistance was crucial, especially during the earliest stages of this project, where
hours were long and data were few. She has provided for the practical aspects of
the electrochemical results described herein.

Kristin Ringland has been an enormous help throughout this project. She has

been present for virtually all of the data acquisition and has assisted in many other

v



ways too numerous to detail. Throughout the rigors of grim and intense synchrotron
runs, she has uttered not even one complaint. As has been remarked, she is still
probably “the perfect graduate student”. Arthur Woll has been a constant friend
in the lab, and I have appreciated his good humor throughout. He and I have had
many discussions on x-ray scattering from surfaces, and have discussed the need
for a comprehensive treatment that we can understand. I hope to see more about
this in his dissertation. Emma Sweetland, the first student to graduate, helped
me through the earliest years. She is also responsible for much of the laboratory
infrastructure that we often take for granted.

Samantha Glazier was the newest member of this collaboration. Her dauntless
enthusiasm and relentless curiosity have been refreshing for us veterans. 1 would
also like to thank two other x-ray electrochemists. Mike Toney of IBM gave me some
early encouragement and practical advice on cell design and x-ray measurements.
Ben Ocko of NSLS has also given me lots of advice, and acted as the most steadfast
critic. Jean Jordan-Sweet at IBM has been responsible for the beamline where this
x-ray data was taken. Supervising the steady stream of users, ensuring that the
beamline is ready for use, and repairing the broken/altered equipment afterwards
is a thankless job. I would like to thank her for it.

I would like to thank the members of my special committee, who have taken the
time to read this dissertation, and are likely to be the ones to ever do so. (Though if
you are reading this, who knows?) I really appreciated their comments and careful
readings; they have made this dissertation far better and more readable that I could

have done alone. I would particularly like to thank the Chair, Carl Franck, for his



encouragement, support, and advice (particularly on the choice of postdoctoral
appointments) throughout most of my graduate studies. I also would like to thank
him for hosting the Easy Physics seminars, which have been an interesting staple
of my physics diet.

This would not be possible without my family, who got me to this stage in the
first place and gave me the tools to continue. Jennifer Mass, my fianceé, has helped
me through this dissertation from the other side of a Ph.D. I could not have made
it without her patience and support throughout the entire process. I would simply
be lost without her.

The U.S. taxpayer has provided generously, if somewhat unwittingly, for this
research. This work was supported by Cornell’s Materials Science Center (NSF
Grant No. DMR-96-32275). Additional support was provided by the NSF (Grant
Nos. DMR-92-57466 and CHE-94-07008) and the Office of Naval Research. The
x-ray data were collected at the Cornell High Energy Synchrotron Source (CHESS),
which is supported by the National Science Foundation (Grant No. DMR-93-11772),
and at the IBM-MIT beam line X20A at the National Synchrotron Light Source
(NSLS), Brookhaven National Laboratory. NSLS is supported by the U.S. Depart-
ment of Energy, Division of Materials Sciences and Division of Chemical Sciences.

(Contract No. DE-AC02-76CH00016).

vi



Table of Contents

Introduction

Introduction to Electrochemistry

2.1 Imtroduction . . . . . . . . ... Ll
2.2 Electrochemical Potential . . . . . . ... ... ... ........
2.3 Electrode — Solution Interface . . . . . . .. ... ... ... ....
2.4 Charged Ions in Solution . . . . . .. ... .o oL
2.4.1 Transportoflons . . . . . ... ... ... ... .......
2.4.2 Supporting Electrolyte and Charge Screening . . . . . . ..
2.5 Bulk Deposition . . . . . ... ... .
2.5.1 Nernst Equation . . .. ... ... ... ... ........
2.5.2 Cottrell Equation . . . . . .. ... ...,
2.6 Underpotential Deposition . . . . . . ... ... ... ... ...
2.7 Specific Adsorption . . . . . . ..o
2.8 Adsorption Isotherms . . . . . . . .. ... oL,
Introduction to X-ray Scattering
3.1 Imtroduction . . . . . . . . ... Lo
3.2 Generationof X Rays . . . . . ... ... 0L,
3.3 Conventional X-ray Sources . . . . ... ... .. ... .......
3.4 Synchrotron X-ray Sources . . . . . . . . .. ...
3.5 Single-Electron Scattering . . . . .. ... ... ... L.
3.6 Scattering from Multiple Objects . . . . . .. ... ... ... ...
3.6.1 Fourier Transforms . . . . ... ... . ... ... ......
3.6.2 Structure Factors . . . . . .. ... o000
3.6.3 Correlation Functions . . . . . .. .. ... ... ...
3.7 Scattering from Atoms . . . . . ... ...
3.7.1 Absorption . . . .. ...
3.8 Crystals . . . . . .. . e
3.9 Diffraction from Crystals . . . . . .. ... ... ...

vil

10
11
21
22
24
25
26
29
32
35
35



3.9.1 Infinite Crystal . . . . . . .. ... ... oL L. 62

3.9.2 LatticeswithaBasis . . .. ... ... ............ 64
3.10 Thermal Effects and Inelastic Scattering . . . . .. ... ... ... 66
3.11 X-ray Scattering from Surfaces. . . . . . . ... ... 0oL, 68
3.11.1 Truncating the Infinite Crystal . . . . ... ... ... ... 69
3.11.2 Reflectivity from Smooth Surfaces . . . . . . . .. ... ... 72
3.11.3 Scattering and Reflectivity . . . . . . ... ... ... .. 7
Experimental Procedures and Apparatus 82
4.1 Introduction . . . . . . . . .. ..o 82
4.2 Sample Preparation . . . . . . ... ... ... L oL 83
4.2.1 Procurement . . . ... ... ... ... 83
4.2.2 Miscut Calculation . . . . . ... .. ... ... ....... 83
4.2.3 Sample Preparation . . . . . . .. ... .00, 85
4.3 Electrochemical Apparatus and Procedures . . . . . .. .. .. ... 88
4.3.1 Solutions. . . . . . . . . .. 88
4.3.2 Three-electrode Electrochemical Cells . . . . . .. . ... .. 90
4.3.3 Hanging Meniscus Cell . . . . .. ... .. ... ... 91
434 In Situ X-raycell . . . . .. ... oL 94
4.3.5 Potentiostat . . . . .. ... ..o Lo 97
4.3.6 Safety . . .. ... 99
4.3.7 Sample Treatment . . . ... ... ... ... ... ..... 99
4.4 X-ray Apparatus . . . . . . ... 101
4.5 Time-Resolved Measurements . . . . . . ... .. ... ....... 104
4.6 Future Improvements . . . . . . . . ... ... L. 105
4.6.1 New Cell Design . . . . .. ... ... ... ... ..., 105
4.6.2 Improved Sample Quality . . .. ... ... ... ...... 107
4.6.3 Area (or Linear) Detectors . . . . . ... ... ... ..... 107
4.6.4 Improved Electronics . . . . . .. ... ... ... ...... 107
Cyclic Voltammetry and Static X-ray Measurements 109
5.1 Introduction . . . . . . .. .. ... L 109
5.2 Cyclic Voltammetry . . . . . . . .. ... 00 109
5.2.1 Cyclic Voltammetry for an Ideal System . . . ... ... .. 110
5.2.2  Cyclic Voltammetry for Cu/Cl/Pt(111) UPD. . . . . . . .. 113
5.3 Hexagonal Coordinates . . . . . . . . .. . ... ... ... ... . 117
5.4 Discussion of Incommensurate Structure . . . . . .. ... ... 121
5.5 Static X-ray Data . . . . . .. ... ... ... 129

viil



6 Kinetic Measurements

6.1 Introduction . . . . . . . . . . L

6.2 Time-Resolved Data

6.3 Stochastically Nucleated Islands
6.4 Instantaneous vs. Progressive Nucleation . . . . . .. .. ... ...
6.5 Characteristic Nucleation Time
6.6 g-tData . ... ... ... .
6.7 Growth of Two-Dimensional Islands . . . . .. ... ... ......
6.8 Avrami Theorem . . . .. .. ... ... ... .. ... ......
6.9 Extended Coverage . . . . . . . . .. .. .. ... ..

6.10 Analysis of ¢—t Data

6.11 Density-Driven Nucleation and Growth Kinetics . . . . . . ... ..
6.12 Step Chronoamperometry of an Ideal System . . . . . . ... .. ..
6.13 Discussion . . . . . . . . ... e e e

7 Conclusions
A Gaussian Distributions
B Diffusion Equation

Bibliography

X

141
141
142
144
149
150
153
157
158
159
160
167
171
174

178

181

184

187



List of Tables

5.1

6.1

Summary of measured peak widths (d¢y, dgs) and calculated reso-
lutions (dq, dq, ). All values are full-width at half-maxima. . ... 139

Parameters obtained from fits to figure 6.8. The physically interest-
ing parameters are shown in the top portion, and the remainder are
shown in the bottom portion. . . . ... .. ... ... ...... 166



List of Figures

2.1

2.2

2.3

24

2.5
2.6

2.7
2.8
2.9

BDM model of charged double layer. Adapted from [38, 18]. The
polar solvent molecules are shown as ellipses, with the arrows point-
ing toward the positive end. The specifically adsorbed (section 2.7)
ions of indeterminate charge are labeled as “q”. Note that some of
the ions are solvated, which limit the closest approach distance. . .
(a) Diagram of the Helmholtz model. The negative ions adsorbed
onto the surface are shown with solid lines. The positive “image”
charges are shown with dotted lines. (b) Potential ¢ vs. distance z
from the electrode. . . . . . . ..o Lo
Normalized potential profiles ¢/¢¢ vs. z for the Gouy-Chapman
model at ¢y = 1000 mV (solid), 100 mV (dashed), 10 mV (dot-
ted). The ¢g = 10 mV case is indistinguishable from the ¢y — 0
limiting form (2.27) . Note that larger values of ¢¢ have steeper
descents. I have used the case of 0.1 M HCIOy,, just as in the exper-
iments described later. For this case, the Debye length is LDebye =

9.6 A. Adapted from a similar figure in [19]. . . . ... ... ...
Potential profile ¢ vs. z for the Stern model at ¢ = 130 mV. The
transition point is set at zomp = 5 A (dashed line), which then
corresponds to a transition voltage of ¢ogp = 75 mV. I have used
the case of 0.1 M HCIO,, as in the experiments described later.
Adapted from a similar figure in [20]. . . .. .. ..o
Cartoon of Bulk Deposition . . . . . ... ... ... ........
(a) Current density at the electrode surface from (2.53). (b) Con-
centration profiles from (2.53), for t = 0.001s (solid), 0.01s (dotted),
0.1s (dot-dashed), and 1s (dashed). . ... ... ... .... ...
Indication of underpotential deposition during a voltage sweep.

Difference between bulk deposition and underpotential deposition .
Diagram of energy levels for adsorption process. In this case, ad-
sorption is energetically favored by an amount AG, but the system
must first overcome an energy barrier G'. . . . ... ... .. ...

xi

12

14

18

20
28

31
33
34



2.10
2.11

3.1
3.2

3.3

3.4

3.9
3.6

3.7
3.8

4.1

4.2

4.3

4.4

4.5

4.6
4.7

Langmuir isotherms for various values of AGy/kT. . . . . ... ..
Frumkin isotherms for various values of g. The dotted line corre-
sponds to g = 0, which is identical to the Langmuir isotherm.

Diagram for classical x-ray scattering . . . . . .. .. .. ... ...
Diagram illustrating that ¢ = 2k sin 6. For elastic scattering, the in-
coming wavevector k; and outgoing wavevector ko both have length
k. The momentum transfer q = ko — ky. From [9]. . . . . ... ..
Standard atomic form factors fy(¢), normalized by atomic number
7, for Pt (solid), Cu (dotted), and Cl (dashed). Note that f;(0) = Z.
From [151]. . . . . . . .. L
An illustration of a mass absorption coefficient vs. wavelength. This
is intended only for illustration, so it corresponds to no element. The
sharp drop in intensity is known as the absorption edge. . . . . . .
Graph of Sls—?ig% vs.x,for N=10. . .. ... ... ... ......
A logarithmic plot of S(q) vs. ¢, as given in (3.92) for N, = 1000.
This is the same function shown in figure 3.5, but with a larger N,.
Also, a finite resolution function has been convolved through the
data. This eliminates the numerous minima seen in figure 3.5, and
is reasonable from an experimental standpoint. The minimum value
is near 1/2, because (sin®x) = 1/2. Without the convolution, the
minimum value is zero. . . . . . .. ..o Lo
Diagram for the Fresnel equations. . . . . ... ... ... .. ...
Fresnel reflection and transmission coefficients. In this example,
a. = 1°. The transmission is sharply peaked at the critical angle,
then quickly falls tounity. . . . . . . .. ... ...

Determination of Miscut Angle . . . .. ... .. .. ... ...
Diagram of orienting/polishing apparatus. (a) Side view. (b) Bot-
tom view of the stage (B), showing the kinematic mount. Labels are
described in the text. . . . . . ... .o Lo
Mosaic scans, before and after annealing, normalized to unit peak
height. . . . . . . .o
Electrodes used for the electrochemical measurements. (A) 10 mm
diameter electrode. (B) 1-2 mm diameter electrode. (C) Ag/AgCl
saturated-NaCl reference electrode. . . . . . . .. .. .. ... ...
Drawing of hanging meniscus cell. . . . . . ... ... ... ....
Cartoon of in situ electrochemical x-ray cell. . . . . ... .. ...
Detailed plans for the in situ electrochemical x-ray cell, prepared by
Lisa Buller [52]. . . . .. ... ... . ... ... ..

xii

40
48

52

o7

60
70

73
74

75
84

86

89

92

93
94



4.8

4.9

4.10
4.11

5.1

5.2

9.3
0.4

3.5
2.6
5.7

2.8

9.9

5.10

5.11

5.12

5.13

Absorption through a layer of thickness [, given incident angle o and

reflected angle 5. . . . . . ..o L 97
Simple potentiostat circuit for a three-electrode electrochemical cell.

Adapted from [21]. . .. . ..o 98
Drawing of cooling cell. . . . . . . . ... ..o 102
Instrumentation for timing experiments. . . . . . .. ... ... . 106

(a) Applied voltage waveform. (b) Current response for an ideal
system. . . ... e 111
A cyclic voltammogram taken in the x-ray scattering cell at a sweep
rate of 5 mV /s with 1 mM Cu?" and 10 mM Cl1~, and 0.1 M HCIO,
as a supporting electrolyte. . . . . . .. . ... ... ... 114
Cartoon of phases in the UPD of Cu on Pt(111) in the presence of C1.116
(a) The Pt(111) surface with surface lattice vectors a, b, which are
perpendicular to ¢ = (111). (b) Reciprocal lattice vectors corre-
sponding to the unit cell chosen in (a); a* and b* subtend 60° and

are perpendiculartoc*. . . . . ... .. L. 118
Indexing of surface units in real space. . . . . . . .. .. ... ... 119
Indexing of surface units in reciprocal space. . . . . . .. .. .. .. 120

Real-space map of the incommensurate overlayer, looking down on
the Pt (111) surface (gray). The Cu atoms (black) lie above the Pt
substrate and are incommensurate with it. The Cl ions (hollow) lie
in three-fold hollow sites above the Cu layer. . . . . ... ... .. 122
Real space image of bilayer. The open circles represent, the positions
of the copper atoms, and the closed circles represent the positions
of the chloride atoms. In reality, the chloride atoms occupy consid-
erably more space than the copper atoms, as shown in figure 5.7. . 125
Reciprocal space map of monolayer (circles) and bilayer (crosses).
The monolayer points correspond to figure 5.6. The bilayer points

incorporate the L = 0 structure factor from (5.17). . . . . ... .. 126
Structure factors for various the (0 0) (solid), (0 1) (dotted), and
(10) (dashed) rods as a function of g,. . . . . . . . ... ... ... 128

Structure factors for various the (0 0) (solid), (0 1) (dotted), and
(1 0) (dashed) rods as a function of ¢,. The (0 1) and (1 0) coincide. 130
Scattered intensity at q = (0.765 0 1.5) + q, at 350 mV (hollow)
and 200 mV (filled) vs. Ag/AgCl. The solid line is the best fit to a
Lorentzian line shape. . . . . . . . ... ... ... ... 132
Scattered intensity at q = (0.765 0 1.5) + q at 350 mV (hollow)
and 200 mV (solid) vs. Ag/AgCl. The solid line is the best fit to a
Lorentzian line shape. . . . . . . . . .. ... ... 0L 134



5.14 Cartoon of resolution function. (Created by Joel Brock.) . . . . . .
5.15 Comparison of the (1 0) crystal truncation rod (filled) and the
(0.765 0) overlayer Bragg scattering rod (hollow) at L = 1.5. Both
are measured in the q, direction and at 350 mV. The overlayer peak
is barely visible near ¢ =317.6. . . .. .. ... ...
5.16 Comparison of the (1 0) crystal truncation rod (filled) and the
(0.765 0) overlayer Bragg scattering rod (hollow) at L = 1.5. Both
are measured in the q; direction and at 350 mV. . . .. . ... ..

6.1 (a) Applied potential steps. (b) Current transients. (c¢) Time de-
pendence of the integrated intensity of the (0.765 0 1.5) overlayer
diffraction peak. . . . . . .. .. ..o o

6.2 Cartoon of a nucleation process. . . ... ... ... .. ......

137

138

145

6.3 Example of Gibbs free energy AG as a function of particle number N.147

6.4 Cartoon contrasting progressive and instantaneous nucleation. . . .
6.5 Diagram of voltage-quench experiments. . . . . . . . .. ... ...
6.6 Typical trapezoidal fit . . . . . . .. .. ... 0000,
6.7 Characteristic rise time 7 vs. applied voltage. Solid points represent
x-ray transition times, while hollow points represent the time scale
for the desorption current transient to fall to 5% of its peak value.
The straight line is a fit to the nucleation model (6.8) with d = 2.
Inset: 7 on linearscale. . . . . .. ... ... ... ...,
6.8 Scattered intensity as a function of time ¢ and transverse scattering
vector, q, with a false gray-scale indicating intensity. Time bins
have been merged for clarity. . . . . .. . ... ... ...
6.9 Fits of data in figure 6.8 at representative times ¢t = 12, 14.24, 16.48,
and 18.72 seconds. The thin lines are from fits to the individual
slices, while the thick lines are from the fit to (6.23). . . . . .. ..
6.10 (a) Contours of constant intensity of the data set (thin lines) in
figure 6.8 and from the best fit to (6.23) (thick lines). (b) Best fit
results for the half-width at half-maximum (A; descending) and the
integrated intensity (Iy; ascending) vs. time. Circles are for separate
Lorentzian fits to each time slice and the solid lines are from a fit
t0 (6.23). . . .
6.11 Comparison of (top) intensity generated from a fit to (6.23) with
(bottom) measured x-ray intensity; time bins have been merged for
clarity. . . ..o
6.12 Plot of the expression on the right-hand side of (6.25) vs. ¢t. The
noise in the y-values are primarily due to the uncertainty in A(t),
and make a test of (6.25) impossible. . . . ... ... L.

xiv

151
152

155

156

161

162

165



6.13 Schematic of two possible deposition processes. The solid lines repre-
sent mass flow (particle transfer) and dotted lines represent current
flow (charge transfer). . . . ... .. ... .. oo L 169
6.14 Current density at the electrode surface from (6.48) with b = 0.0001
(dotted), b = 0.001 (dot-dashed), and b = 0.01 (dashed). Note that
b = 0.01 is nearly indistinguishable from the Cottrell result (solid). I
have chosen D = 9 x 10~%cm? /s, which is typical of aqueous solutions. 175

XV



Chapter 1

Introduction

The electrodeposition of a metal adsorbate onto a solid surface is a key aspect of
important technological processes such as electroplating and corrosion inhibition.
In a number of cases, metal overlayers can be electrodeposited onto a dissimilar
metal substrate at a potential that is less negative than the Nernst potential (that
required for bulk deposition). Experimentally, this “underpotential deposition”
(UPD) provides a precise means for quantitatively and reproducibly controlling
coverage in the submonolayer to monolayer (and in some cases multilayer) regime
(89, 7, 128].

The initial stages of adsorption/deposition, along with the growth mechanism,
dictate the structure and properties of the deposit. UPD is an important experimen-
tal technique for investigating the early stages of deposition, and the diverse factors
that influence it, for several reasons. First, in contrast to vacuum-surface experi-

ments, the electrochemical interface provides direct control over the chemical po-



tential of adsorbed species. This has been recently exploited by Ocko and coworkers
[105] to study two-dimensional Ising lattice dynamics. Second, the charged double-
layer (section 2.3) produces enormous (up to 107 V/cm) electric fields, capable of
driving surface rearrangements [106]. Third, UPD is generally reversible. Thus, it
is possible to perform repeated measurements of a deposition/desorption transition
using the same sample and systematically varying the control parameters.

The strongest interaction in a UPD process is between the metal to be deposited
and the substrate [89, 6, 51]. Thus, UPD is usually restricted to the deposition of
one monolayer prior to the onset of bulk deposition; in some systems, however, up
to three atomic layers can be deposited. Although the metal-substrate interaction
usually dominates, other interactions can also be important. For example, strongly
adsorbing anions in the electrolyte are particularly important as both anion-metal
and anion-substrate interactions significantly affect UPD processes. Furthermore,
the adsorbed species rarely loses its charge completely during the early stages of
deposition [119, 120, 149, 129, 94, 155, 156]. Rather, it becomes completely reduced
only when the applied potential is close to the Nernst potential. This variable
charge state alters the electrostatic interaction between the deposit and the anions.
At more positive potentials, there is a strong attractive electrostatic interaction
that disappears as the metal is discharged. This attractive interaction can produce
a metal-anion bilayer on the electrode surface at intermediate potentials [156, 123,
91, 133, 131].

In addition to the surface coverage, both the presence of other adsorbates, espe-

cially anions, and the surface structure of the substrate can profoundly affect the



structural and electronic characteristics of the deposit [90, 149, 94, 150, 71]. Al-
though there is a great deal of existing work on UPD lattice formation, the early
stages of deposition are not well-understood [121, 33]. In much of this earlier work,
the structure of a UPD overlayer was determined by transferring the electrode into
an ultra-high vacuum (UHV) chamber and employing established surface science
techniques such as low-energy electron diffraction (LEED). However, such mea-
surements are inherently ex situ and cannot provide information on the kinetics of
deposition.

Recently, in situ probes such as scanning tunneling microscopy (STM) [92,
64, 76|, atomic force microscopy (AFM) [93], and surface x-ray scattering (SXS)
[101, 132, 133, 139, 140, 107] have been applied to UPD systems. In addition to
eliminating the ambiguity of ez situ measurements, they offer the possibility of
studying the kinetics of deposition. Kinetic studies are crucial for identifying the
rate-limiting steps in the electrochemical growth of not only metals but also of tech-
nologically relevant materials such as GaAs [136] and CdTe [135]. Such studies can
also provide important tests of the large body of theoretical work on nonequilibrium
statistical physics, especially on the kinetics of growing surfaces and interfaces [17].

The UPD of metal overlayers onto single crystal electrodes provides an excel-
lent family of experimental systems for studying fundamental aspects of materials
growth. In particular, Cu UPD on Pt(111) has been extensively studied by a variety
of techniques. The process is very sensitive to the presence of anions and appears to
be kinetically controlled. The exact structure and nature of the overlayer, particu-

larly at intermediate coverages, has been the subject of some controversy. Based on



LEED studies, Michaelis et al. [102] identified the intermediate overlayer as a 4 x 4
structure. However, more recent in situ anomalous x-ray diffraction measurements
of the overlayer structure as a function of potential by Tidswell et al. [131] indicate
that the intermediate overlayer structure is a more complicated incommensurate
CuCl bilayer.

Surface x-ray scattering techniques have been previously applied to UPD. For
example, Toney and coworkers have studied Pb, T1, and Cu UPD on Ag and Au
surfaces [101, 132, 133]. In addition, Ocko and coworkers have studied a variety
of equilibrium surface structures as a function of both the solution concentration
of the adsorbate (especially anions) and the surface charge, with emphasis on gold
substrates [139, 140, 107]. However, all of these studies have been static in nature
and have not addressed the kinetics of adlayer formation. This is due, in part, to
the severe experimental challenges that such measurements present.

Time-resolved surface x-ray scattering represents a nearly ideal probe for study-
ing the time evolution of the overlayer structure during UPD. X rays in the 0.5 A
to 1.5 A region are not significantly absorbed by aqueous solutions allowing for the
in situ study of the electrode/solution interface. In addition, the line shape of the
scattered x rays can be interpreted simply in terms of well-known correlation func-
tions, allowing direct tests of theory. Using signal averaging techniques, transient
structures with lifetimes as short as a few microseconds can be studied [127].

In this dissertation, I report the first time-resolved surface x-ray scattering mea-
surements of metal electrodeposition. The specific system chosen system is the UPD

of Cu?* onto Pt(111) in the presence of C1~ anions. Some of the results have been



already published [65, 78, 5, 66]; inclusion of these results in this dissertation is with
the written permission of these journals.

To my knowledge, these are the only time-resolved x-ray measurements of any
UPD process. This is not surprising, because these measurements are extremely
difficult to perform. UPD is extremely sensitive to contaminants, requiring special
protocols and rigorous cleanliness throughout the preparations of the sample, the
solutions, and the electrochemical cell. To observe the scattering from only a sin-
gle monolayer, a synchrotron x-ray source is necessary. Additional scattering from
the solution and the film that contains it can easily overwhelm the signal of in-
terest. These considerations imply that static x-ray scattering measurements from
the UPD layer are quite difficult. Compounding this by performing time-resolved
measurements of the nonequilibrium UPD system adds another challenge. The sig-
nal to noise ratio must be sufficiently high in each time bin to obtain useful data.
This ratio can be improved by depositing the UPD layer under voltage control, and
then pulling out most of the solution. This is the traditional method for studying
UPD structures in situ. However, this configuration completely prevents further
manipulation of the UPD layer; the contact between the sample face and the other
electrochemical electrodes is diminished. The kinetics of the UPD formation or
dissolution are then completely inhibited.

Because of all these difficulties, the conventional wisdom was that time-resolved
x-ray scattering measurements of UPD were not possible. To resolve these chal-
lenges, we had to develop and successively improve several aspects of our exper-

iment. The first and most dramatic improvement came in the observation that



annealing the sample at high temperature for up to an hour dramatically improved
the crystal mosaic (an indication of the size and relative alignment of domains within
the crystal). Similar behavior has been observed in single noble metal crystals in
UHYV [69]. The next limitation was the misorientation of our samples’ faces with
respect to the crystal axis. Ultimately, this imposed a constraint on the maximum
terrace size. Following Joel Brock’s suggestion, I designed a crystal polishing ap-
paratus that could orient the sample in any arbitrary direction with a precision of
0.001°. The sample could be repolished along this axis, producing a crystal face with
the desired orientation. (Other experimental groups in Clark Hall have adopted our
design and procedures to obtain dramatic improvements in sample quality.) Lisa
Buller had a electrochemical cell built, based upon Mike Toney’s original design.
The final challenge was to interface the potentiostat to the rest of our timing hard-
ware and software. This involved months of programming and testing.

After overcoming these challenges, we were able to obtain very useful and inter-
esting data. We have studied in situ the ordering kinetics of the two-dimensional
Cu-Cl crystal electrodeposited on a Pt(111) surface. We simultaneously measured
high-resolution time-resolved x-ray scattering and chronoamperometric (current vs.
time) transients. Both measurements were synchronized with the leading edge of an
applied potential step that stimulated the desorption of Cu and subsequent ordering
of the Cu—Cl crystal. In all cases, the current transient occurred on a shorter time-
scale than the development of crystalline order. The time-dependent x-ray intensity
data (2 x 10* data points) were well fit by an Avrami-like function with only three

parameters. By performing a series of voltage-step experiments, we demonstrated



that the ordering time diverged with applied potential ¢ as 7 ~ exp[1/(¢— ¢o)], con-
sistent with the nucleation and growth of two-dimensional islands. Monitoring the
time-dependent widths of the x-ray peak, we observed a narrowing corresponding
to the growing islands.

This dissertation is organized into chapters as follows. Chapters 2 and 3 are in-
troductory in nature. Chapter 2 is an introduction to electrochemistry, specifically
oriented to the phenomenon of UPD. It is aimed at a physicist who may be unfa-
miliar with electrochemical phenomena, and the presentation is from a fundamental
perspective. Wherever possible, I have made analogies to examples familiar to most
physicists. Chapter 3 is a derivation of some x-ray phenomena, starting with the
classical x-ray scattering from an electron.

The experimental apparatus and procedures are documented in chapter 4. These
include sample preparation and data acquisition procedures. Static x-ray measure-
ments and their subsequent analysis are in chapter 5. Kinetic (time-resolved) x-ray
and chronoamperometric (current vs. time) measurements are found in chapter 6.
These data are analyzed in terms of a nucleation and growth model. Finally, con-
clusions are presented in chapter 7. Long derivations and discussions are relegated

to the appendices.



Chapter 2

Introduction to Electrochemistry

2.1 Introduction

In this chapter, I will introduce and discuss some of the rudiments of electrochem-
istry from a physics perspective. The first section introduces the electrochemical
potential. The second section concerns the nature of the electrode — solution in-
terface, and discusses several models for the electric charged double-layer. Then,
the behavior and transport of ions in solution is discussed. The following sections
describe bulk deposition and underpotential deposition. Finally, specific adsorption
is explained and adsorption isotherms are examined.

What is electrochemistry? I like the definition with which Schmickler [114]

begins his recent book:

Electrochemistry is the study of structures and processes at the interface

between an electronic conductor (the electrode) and an ionic conductor



(the electrolyte) or at the interface between two electrolytes.

The first electrochemical experiments were also some of the first biophysical
experiments. These are the famous studies of electrified frog legs, performed by Luigi
Galvani [68, 67]. Since then, experimental science has fragmented into a multitude
of disciplines and spawned many industries. Presently, electrochemical processes are
crucial to a wide variety of commercial processes. These include batteries, which are
of great importance in the quest for low-emission electric vehicles. Corrosion is an
electrochemical process under active study, especially in industry. Electroplating,
for either the prevention of oxidation, or coating one metal with a more precious one
(such as in jewelry) is another process of importance. Recently, specific multilayer
semiconductor structures have been electrochemically synthesized.

Two more examples illustrate the importance of electrochemistry. Electroana-
lytic processes alone account for $68.2 billion worldwide [134]. The primary products
include chlorine, aluminum, copper, and sodium hydroxide. Electrolysis of water
is still used in Europe to produce high purity hydrogen and oxygen. The global
production of aluminum consumes the same amount of electricity as 10% of the
United States electricity sales. Electrochemistry is also crucial to electrochemical
biosensors, which are now used in medical settings. They monitor the concentra-
tions of various gases dissolved in the blood (such as carbon dioxide, oxygen, pH) or
electrolyte levels (sodium, potassium, calcium, chloride). These sensors are portable
and give continuous real-time results at the patients’ bedside. Previously, the al-
ternative was to periodically take blood samples and send them to the hospital lab

for analysis.
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2.2 Electrochemical Potential

In analogy to the chemical potential y;, let us define the electrochemical potential

of species i with charge ¢; in an electric potential ¢ [22]:
Hi = i + G 9 - (2.1)

Obviously, for a neutral species, the electrochemical potential and the chemical
potential are identical.
For convenience, chemists often separate the chemical potential into a concentration-

dependent term and a concentration-independent term.
j27; (T, CZ') = ,l,[,(),z(T) + kT In a; (T, Ci) (22)

where a; is called the chemical activity of species 7. Values for the standard chemical
potentials yi; are tabulated in the chemical reference literature. Although only 7" is
listed here, the chemical potential may depend upon numerous parameters (pressure,
pH, etc.), depending upon the nature of the experiment.

This separation in (2.2) is reminiscent of the isolation of the pressure-dependent

terms in gas mixtures:

(T, p) = o (T) + KT In(pi/pos) (2.3)

where the pressures p; take the place of the concentrations ¢; and the pressure ratios
Pi/Po,; take the place of the activities a;. For ideal gases, py; = 1, and the chemical

potential of an ideal gas is recovered [96],

wi(T, p) = poi(T) + kT Inp; . (2.4)



11

Likewise, we define the activity coefficients ;,
a; = %G , (2.5)

and require that 7; = 1 for an “ideal” solution (like an ideal gas, there is no inter-

action among ions of species i), such that the analogous equation obtains:
wi(T, ;) = poi(T) + kT Ine; . (2.6)

This approximation is expected to hold in the limit of very dilute solutions (¢; — 0),
or when the ions are well-screened.
Returning to the electrochemical potential (2.1), the definition of chemical ac-

tivity (2.2) can be incorporated as

For a pure phase (for instance, a solid metal electrode), the activity is unity and
fii = pio- The electrons within that metal have an electrochemical potential ji,- =
te— 0 — @. Their concentration never varies appreciably, so we can ignore the effects

of activity within the metal.

2.3 Electrode — Solution Interface

A complete model of the electric double layer [23, 39, 115] was given by Bockris,
Devanathan, and Miiller [34]. This is illustrated in figure 2.1. It contains positively
charged species adsorbed onto the electrode, polar solvent (water) molecules, and
solvated species both near and far from the electrode surface. We will take these

components in turn, and gradually build up to this complex arrangement.
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Figure 2.1: BDM model of charged double layer. Adapted from [38, 18]. The polar
solvent molecules are shown as ellipses, with the arrows pointing toward the positive
end. The specifically adsorbed (section 2.7) ions of indeterminate charge are labeled

s “q”. Note that some of the ions are solvated, which limit the closest approach

distance.
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If we apply a negative charge onto our electrode surface, then it will attract
positive ions from solution. This will have the effect of making the charge of the
electrode appear to be less negative to a test charge deep in the bulk solution. This
“charge screening” is exactly analogous to the screening of point particles described
by Debye, which is present in a broad range of physical contexts. Charge screening
is discussed again in section 2.4.

Throughout this section, the potential far from the electrode (in the “bulk so-
lution”) is set to zero. Relative to this potential, the electrode is at an electric
potential ¢yq.

The earliest model of the double layer was proposed by Helmholtz [137, 138] in
1879. He considered just the a layer of positively charged ions, tightly bound to the
negatively charged electrode surface. The centers of these ions were postulated to
lie on a single “Helmholtz” plane at a distance zgy from the electrode surface. The
resulting potential is identical to that within a capacitor, and is a linear interpolation

between the electrode and bulk potentials, as shown in 2.2.

¢o(1—§) z < zy

0 Z > 2y

¢(z) = (2.8)

In analogy with a parallel-plate capacitor, the capacitance is a constant independent,
of voltage. This is in conflict with experimental observations, indicating that this
model is incomplete.

An entirely opposite approach was undertaken by Gouy in 1910 [73] and Chap-
man in 1913 [54]. They proposed that none of the ions were tightly bound to the

surface. Each ion is not constrained to lie in a tight double layer, but is sensitive to
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Figure 2.2: (a) Diagram of the Helmholtz model. The negative ions adsorbed onto
the surface are shown with solid lines. The positive “image” charges are shown with

dotted lines. (b) Potential ¢ vs. distance z from the electrode.
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the electric potential formed by the other ions. In this way, the positions of the ions
are not predetermined, but are the result of a statistical equilibrium with respect
to this potential. This is only a mean-field model; individual ions are expected to
react only to the overall field produced by all the other ions.

This mean-field model can be analyzed with some rigor. First, the electric
potential ¢ depends on the charge density p as stated by Poisson’s equation (in

Gaussian units),
d?¢*  Amp
dz2 €

(2.9)

where the € is the dielectric constant of the solution.

The charge density is the sum of the charges from species ¢

p(z) = Zqzcz(z) . (2.10)

In equilibrium, each charge density follows a Boltzmann distribution, determined

by the mean field ¢(z),

—quS(Z) (2_11)

¢i(z) = ci(z= o0) exp T

Combining these two equations leads to the Poisson-Boltzmann equation

¢ 4 —i6(2)
P ; gici(z=00) exp T (2.12)
Using the relation
2¢* 1d [(do\’

we can rewrite (2.12) and integrate to find

do\ > kT —qg;
(22) =S5 om0y exp 40D s comstant 219

1
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To solve for the constant, we apply the boundary conditions that far from the

electrode the potential and its derivative fall to their bulk value (zero). That is,

le)lgloqﬁ(z) =0 (2.15)
lim d¢(z)/dz = 0 (2.16)

(2.17)

Then, (2.14) becomes

(g)Q _ 8mkT Y ci(z=o0) (exp ‘qk;’}(z) _ 1) (2.18)

€ i

In order to continue and keep the equations manageable, it is helpful to restrict
the discussion to a “symmetrical” electrolyte. These are also called z : z electrolytes,
because they consist of only one cationic and one anionic species, of equal charge
magnitude (often denoted z). The electrolyte used in these experiments, HClO,4
(which dissociates into HT and (C104) ™), is an example of a symmetrical electrolyte.

Then (2.18) becomes

dp\*  16mkT ey 00 (2)
<%> = <cosh T —1) (2.19)

where ¢y, denotes the common ¢;(z = 00), and ¢ the magnitude of the charges.

Taking the square root,

1/2
dop (32wchoo) sinh qo(2) (2.20)

dz € 2kT
We take the negative square root by our assumption that the electrode sits at a

positive potential with respect to the bulk solution. Substitute

qé(2)
kT

W = (2.21)



to rewrite (2.20) as

d
_1/1 = Kk sinh ¢
dz

where we have also substituted for the inverse of the “Debye length”

1 (87rqzcoo>1/2
= K = .
LDebye ekT

The significance of this length will become apparent below. Rewriting as

/sisz - /dz (=)

and then integrating,
Intanh /2 = —kz + constant
The constant can be determined by using ¢(z = 0) = v, and then

tanh(q¢/4kT)
tanh(gepo/4kT)

= exp(—kz)

In the limit that ¢q — 0, we obtain

¢ = ¢o exp(—k2)
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(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

For aqueous solutions, ¢ = 78.49 [24] at 25°C, and then xk = 3.29 x 107(¢q/€)cco,

where k is given in cm ™! and co, in M (moles/liter). Our electrolyte is 0.1 M HCIOy,

so k = 3.3 x 10® cm™! or 3.3 x 1072 A~!. This constitutes an enormous voltage

gradient, on the order of 10° to 107 V/m.

The Gouy-Chapman model is an improvement over the Helmholtz model, but it

does not take into account the finite size of ions. There must be a plane of closest

approach, just as predicted by Helmholtz. The minimum distance of this plane
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Figure 2.3: Normalized potential profiles ¢/¢q vs. z for the Gouy-Chapman model

at ¢o = 1000 mV (solid), 100 mV (dashed), 10 mV (dotted). The ¢y = 10 mV case

is indistinguishable from the ¢y — 0 limiting form (2.27) . Note that larger values

of ¢y have steeper descents. I have used the case of 0.1 M HCIOy, just as in the

experiments described later. For this case, the Debye length is LDebye = 0.6 A.

Adapted from a similar figure in [19].
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from the electrode surface is the ionic radii. If the ions are solvated, then they will
not even be able to approach that closely. Stern realized this in 1924 [125] and
proposed a model to incorporate this. Essentially, it is a combination of the two
previous models.

Call the distance of closest approach zogp. (OHP stands for “Outer Helmholtz
Plane”. The “Inner” plane will be defined shortly.) The Helmholtz description
applies for z < zopp, and the Gouy-Chapman description applies for z > zopp. At
this boundary, we require continuity in the potential ¢opp and its derivative. In

the z < zopp region, we have the Helmholtz linear potential drop

¢(2) = ¢o — i (2.28)

dz | oup
In the z > zogp region, the potential follows the previous Poisson-Boltzmann result,

but displaced by zoup,

tanh(q¢/4kT)
tanh(q(/ﬁOHp/llkT)

= exp[—k(z — zonp)] (2.29)

If we choose zomp, then we can find ¢ogp by applying (2.20) and (2.28) at
z = zonp and requiring the continuity of d¢/dz there. Numerically solving these
self-consistent equations produces a value for ¢opp. The Stern model adds only this
one additional parameter, zogp.

We will discuss the following models only qualitatively. As we add more com-
ponents to the model, additional variables are added that are difficult to measure.
But it is important to keep the additional components in mind, if only to appreciate

the difficulty of predicting exact quantitative behavior.
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Stern Model
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Figure 2.4: Potential profile ¢ vs. z for the Stern model at ¢y = 130 mV. The
transition point is set at zogp = 5 A (dashed line), which then corresponds to a
transition voltage of ¢pogp = 75 mV. I have used the case of 0.1 M HCIOy, as in the

experiments described later. Adapted from a similar figure in [20].
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The Grahame model [74] (1947) includes the possibility of ions specifically ad-
sorbed (section 2.7) on the electrode surface. This specific adsorption is chemical
in nature, and cannot be explained simply by electrostatic arguments. These ions
can have either positive, negative, or no charge. We expect, however, that their
ionization state and degree of attraction to the electrode will be influenced by the
electrode’s potential. The closest approach of these adsorbates defines the “Inner
Helmholtz Plane”.

The Bockris-Devanathan-Miiller model includes (polar) solvent molecules that
bring us to our complete picture shown earlier 2.1. In retrospect, all of this model-
building may seem somewhat ad hoc. A contrasting approach has been put forth
recently by Borukhov et al. [36]. The authors start with the Poisson-Boltzmann
equation but include the contributions to the free energy from the finite size of the
ions. This remediates some of the defects of the Gouy-Chapman model and is in
agreement with experiments they cite where large multivalent ions are adsorbed

onto a charged Langmuir monolayer.

2.4 Charged Ions in Solution

Having discussed the electrode surface and its ionic neighborhood, we turn to the
charged ions in bulk solution. First, the various modes of transport of charged
ions to the electrode surface are discussed and compared. These play an important
role in the kinetics of deposition at that interface. Second, the importance of a

supporting electrolyte in electrochemical experiments is described.
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2.4.1 Transport of Ions

In any deposition/growth system, the transport of particles to the surface is an
important consideration. Often, the evolution of the surface morphology is deter-
mined by the relative rates of transport to the surface and reactions at the surface.
Two familiar limiting cases are diffusion-limited aggregation (DLA) [153, 154] and
kinetic-limited growth (such as the KPZ model [86]). All electrochemical reactions
take place only at the electrode surface, so transport of ions to that interface is of
paramount importance.

We expect the current of species ¢ to be proportional to its respective electro-

chemical potential gradient,

CiDi
kT

J, = Vii; + civ (2.30)

with the usual diffusion constant D. J is the flux of ions and has units of concentra-
tion times velocity. We consider the possibility that the solution itself is in motion,
with velocity v. If the concentrations are small, the ideal gas approximation can be
used (2.6):

fi = pog + KT Inc; + ¢;9. (2.31)

The electrochemical potentials, which are not directly measurable, have been re-
placed by concentrations and the electrostatic potential energy. Substituting (2.31)

into (2.30), we obtain the Nernst-Planck equation

_ Dz'Cz' (I') ;

Ji(x) = —DiVe,(r) - == L6(r) + i(r)u(r) . (2.32)
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Using the continuity equation

dc
5 TV I=0 (2.33)

we obtain an equation of motion for the concentration profile

Dic;(r)g;
kT

801- (I')
ot

= D;Vci(r) + V2p(r) — V - (ci(r)v(r)) . (2.34)

These three terms respectively represent diffusion, electromigration, and convection.
Diffusion refers to the random, Brownian motion of particles that follow Fick’s

first and second laws of diffusion:

J(r) = —DVc¢(r) (2.35)
de(r) 2
5 = DV?¢(r) (2.36)

Fick’s first law can be derived by considering the Brownian motion of particles.
A simple treatment can be found in [25], which considers a random walk of fixed
step size. More sophisticated treatments make use of the Langevin equation [97].
Fick’s second law of diffusion (2.36) follows from the first (2.35) by the continuity
equation (2.33).

The diffusion constant can be solved for by using a Fourier transform (ap-
pendix B)

(r*(t)) = 2dDt (2.37)

where d is the spatial dimensionality (d = 3 for a typical solution vessel, although
d = 1 is probably more appropriate for the thin-layer cell described in section 4.3.4).
The second mode, electromigration, refers to the motion of charged ions under

the influence of a The final mode of ionic transport is due to the transport of the
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solution itself. Formally, this is termed hydrodynamic transport, though it is usually
known as convection. Because of the extremely small solution volume in our x-ray
cell, hydrodynamic transport is not a consideration. However, it is an important
consideration in larger electrochemical cells. When the solution is stirred or the
electrode rotated, this will give rise to hydrodynamic effects. Rotating ring-disk
techniques [50] make use of this effect, for instance. Convection must also be taken
into account for sensitive measurements that take place over several minutes and

where significant depletion occurs near the electrode.

2.4.2 Supporting Electrolyte and Charge Screening

In addition to the species of interest, most electrochemical experiments incorporate
a supporting electrolyte. This is either the solution or is dissolved in the solution
at a high concentration with respect to the species of interest. For instance, in
our experiments the primary solution was HyO, and the supporting electrolyte was
0.1IM HCIO4. A brief and practical discussion of supporting electrolytes can be
found in Brett and Brett [40].

There are several advantages to using a supporting electrolyte. First, the double-
layer does not extend far into the solution; the majority of the potential drop is very
close to the electrode (section 2.3). Second, ions are well-screened. As described by
Debye-Hiickel theory (see, for example, McQuarrie [98]), a charge in solution tends
to attracts charges of opposite sign. The gives rise to an effective “ionic atmosphere”
that diminishes the effective net charge felt by a test charge some distance away.

Third, because there are far more charged ions in solution, the overall resistance
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of the solution is much diminished. Fourth, most of the current is carried by the
electrolyte, not the dilute ions. This has implications on the dominant mode of
transport.

In any electrochemical system, it is important to determine what fraction of the
measured current is derived from diffusion as opposed to electromigration. When
both effects are present, the analysis becomes complicated. However, electrochemi-
cal experiments are generally carried out with a large concentration of a supporting
electrolyte relative to the concentrations of active species. The supporting elec-
trolyte does not take part in the reaction at the electrode, but does carry the
majority of the current through the solution. The electrolyte serves to screen the
ions, making the “ideal gas” approximation more realistic. Hence, the deposited

ions arrive mostly via diffusion, and electromigration effects can be neglected [26].

2.5 Bulk Deposition

In this section I will discuss the deposition of “bulk” amounts of material onto an
electrode surface. In the next chapter I will turn to “underpotential” deposition,
which occurs at voltages closer to the rest potential, and is sometimes the precursor
to bulk deposition.

As a prelude to understanding underpotential deposition, it is necessary to un-
derstand something about bulk deposition. First I will discuss the Nernst equation,
which determines the onset of bulk deposition. Then I will introduce the Cottrell

equation, which is a simple realization of bulk deposition. Both of these are covered
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in the more analytical electrochemistry texts.

2.5.1 Nernst Equation

In discussing chemical activities (section 2.2) and and electrochemical potentials
(section 2.2), we have already developed the necessary machinery to write down the
Nernst equation. The following treatment parallels Bard and Faulkner [27].
Using the relation between chemical potentials and chemical activities (2.2), the
Gibbs free energy is
AG = AGy+ kT > v;Ing; (2.38)
i

In an electrochemical reaction, the change in Gibbs free energy is equal in magnitude
to the electrical energy dissipated or produced. Conventionally, the sign of the
voltage difference AV is taken to be AV > 0 when the reaction is spontaneous
(AG < 0). Then

AG = —neAV (2.39)

The “standard” (when all activities are unity) potential of the reaction AV} is just
AGy = —neVy. Then,

T
AV = AV, — I:L—e Z v;Ina; (2.40)

This equation, known as the Nernst equation is of great importance to electro-
chemistry. Knowing the stoichiometry of a reaction v; and the activities a;, one
can predict the electric potential necessary to drive the reaction forward (or spon-
taneously generated). The voltage AV is often termed the Nernst potential. In

electrochemistry textbooks, AV is often written as E, and AVj as E°. I am using
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my notation to emphasize that this voltage is the potential difference across the
electrodes, and to avoid confusion with the electric field.

It is also common to write the Nernst equation in terms of concentrations, which
are easily measured. (The activities are often not known.) Using activity coeffi-

cients (2.5) a; = v;c;,

kT
AV = AVy— — i In ;¢ 2.41
Vo= A S e (2.41)

T
= AV - a > vilng (2.42)
ne %

where the formal potential AV} incorporates the activity coefficients. The formal
potentials for various reactions can be easily measured and are tabulated in the
literature.

Bulk deposition is just an example of these reversible reactions we have been
discussing. Consider the deposition of copper ions from solution onto an inert

electrode. This is written as
Cu®(ads) +— Cu®*(sol) + 2e~ (2.43)

For bulk deposition, we must have AV < 0 for this reaction (as written). For
potentials above the Nernst potential, we expect to see no deposition. As the
potential of the working electrode is lowered below the Nernst potential, deposition
is possible. The more negative the applied potential, the more favored the reaction
becomes, and the faster it goes. Measuring the deposition by the current flow, we

find a response as in figure 2.5.
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Figure 2.5: Cartoon of Bulk Deposition
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2.5.2 Cottrell Equation

Consider a deposition experiment where the potential is abruptly shifted from above
the Nernst potential (no deposition) to below the Nernst (bulk deposition). Before
t = 0, the system is in equilibrium with a mean concentration of ¢, everywhere;
c(z,t < 0) = ce. At t =0, the voltage is altered such that deposition occurs. The
electrode surface is assumed to be perfectly adsorbing so that it is a perfect sink for
the adsorbing ions; ¢(z = 07,¢ > 0) = 0. Each of these adsorbed ions transfers n
electrons to/from the electrode. Furthermore; the solution container is semi-infinite
and hence inexhaustible. Far from the electrode, the bulk solution concentration

will be maintained; ¢(z — 00,t) = co. We must solve the linear diffusion equation

dc(z,t) D82c(z, t)

= 2.44
ot 022 (2.44)
subject to the initial condition ¢(z,t < 0) = ¢ and the boundary conditions
c(z=0"t>0) = 0 (2.45)
c(z = 00,t) = oo (2.46)

The standard method [28, 41] is to Laplace transform (2.44) and the initial

condition:
d*c(z, s)
— Coo = D——— 2.47
sc(z,8) —c e (2.47)
This ordinary differential equation has the solution
c(z,8) = A(s) exp [(s/D)l/Qz] + B(s) exp [—(s/D)l/Qz} + oo /S (2.48)

Applying (2.46) requires A(s) = 0 and (2.45) then requires B(s) = —cw/s. The
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solution to the transformed equation is

c(z,8) = %o {1 — exp [—(s/D)l/Qz]} (2.49)

Taking the inverse Laplace transform yields the concentration profile

c(2,1) = coo {1 — erfe lﬂ%t)”?] } = cooerf lml (2.50)

Using the continuity equation (2.33) and assuming each ion transfers a charge of
ne, then the current density j(¢) measured at the electrode (normalized to electrode
area) is

N e Oc(z, 1)
jt) = lll)l}) = neD 5,

(2.51)

The derivative dc/0z can be evaluated by applying the Fundamental Theorem of

calculus to the definition of the error function,

2 T
erf(z) = ﬁ/o dy y? (2.52)
and then substituting back into (2.51) to arrive at

D )1/2 (2.53)

J(t) = necy (E

The concentration profile and current density are plotted in figure 2.6 for D =
9 x 10 %m? /s, typical of aqueous solutions. Note that the current is arbitrarily
large at early times (limited by extrinsic factors), and decays away as a power-law.
The concentration profile begins as a steep distribution, but broadens at later times

as diffusion makes more ions available.
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Current density from Cottrell equation
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Figure 2.6: (a) Current density at the electrode surface from (2.53). (b) Concen-

tration profiles from (2.53), for t = 0.001s (solid), 0.01s (dotted), 0.1s (dot-dashed),
and 1s (dashed).
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2.6 Underpotential Deposition

Imagine that we start at the rest potential and slowly sweep the potential in a nega-
tive direction. In contrast to the cartoon of bulk deposition (figure 2.5), small peaks
in the current response can be observed. This phenomenon is not ubiquitous. These
peaks are only observed for particular species deposited onto particular electrodes.
In addition, this phenomena is very surface-sensitive. For instance, the peak posi-
tions and heights when Cu is deposited onto Pt vary depending upon the particular
Pt crystal face: (111), (100), or (110). This process is termed underpotential deposi-
tion, because the deposition takes place at potentials “under” the Nernst potential
(closer to the rest potential). A potential applied beyond the Nernst potential is
often termed the overpotential, as in (6.2).

Although underpotential deposition (UPD) is a complex process, we can qual-
itatively justify this behavior. Presuming that a Cu ion has a greater affinity to
bond to a Pt atom than it does to another Cu atom, then we can imagine that the
underpotential deposition situation shown in the top panel of figure 2.8 would be
favored at some potentials for which bulk deposition, shown in the bottom panel,
would not. In the top panel, each deposited Cu is directly in contact with the Pt
surface. In the bottom panel, the subsequent Cu layers are only in contact with the
prior Cu layers.

In the next section, I present simple models of “specific adsorption”, of which

underpotential deposition is a particular example.
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Figure 2.7: Indication of underpotential deposition during a voltage sweep.
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Underpotential deposition (Cu onto Pt)

Bulk deposition (Cu onto Cu)

Figure 2.8: Difference between bulk deposition and underpotential deposition
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2.7 Specific Adsorption

In the discussion of the double layer (section 2.3) we considered the electrostatic
interaction of charged ion species with the charged electrode. In our most sophis-
ticated model, we assumed that no ion could approach closer than the radius of
its solvation sphere. Ions that do lose their solvation spheres and penetrate within
the outer Helmholtz plane are said to be specifically adsorbed. Their interaction is
more than electrostatic, and is comparable to a chemical bond. Bard and Faulkner

[29] make the analogy:

The difference between nonspecific and specific adsorption is analogous
to the difference between the presence of an ion in the ions atmosphere
of another oppositely charged ion in solution (e.g., as modeled by the
Debye-Hiickel theory) and the formation of a bond between the two

solution species (as in a complexation reaction).

Needless to say, these interactions will be very complex. Models of these pro-
cesses need to combine the ionization of charges near surfaces, solvation, chemical

bonding, charge-screening, and surface phenomena such as work functions.

2.8 Adsorption Isotherms

Even in the absence of any adsorption, there would be some concentration (equal
to the bulk concentration) of ions of species i in a region near the electrode surface.

The surface excess concentration I'; [116, 30] is defined to be the concentration of
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species 7 in excess of the bulk concentration, normalized by the area of the electrode.
The “coverage” 6 is defined to be the surface excess normalized by its saturation
value, § = I'/Tq5¢, so that 0 < # < 1. The definition of this region “near” the
electrode surface is somewhat arbitrary. In principle, it can include the diffuse
double-layer. However, the I'; in the diffuse double layer will have little effect if we
have a supporting electrolyte. First, most of the the ions drawn into the diffuse
double layer will be from the supporting electrolyte, not the species 7. Second, the
width of the diffuse double-layer narrows exponentially as the concentration of ions
increases.

In the limit that the adsorbates on the surface to do not interact, we can write
down a simple model for the adsorption onto a surface. This is very similar to
standard the simplest lattice-gas models of adsorption discussed in introductory
statistical mechanics courses. 1 also assume that there is no interaction between the
species and the solution itself, and that there is no species-species interaction in the
solution. If concentrations are not too high, then the supporting electrolyte screens
these charges.

The rate of adsorption is proportional to the concentration of ions in solution c,
the number of sites available for adsorption (1—#), and a Boltzmann factor involving
the Gibbs free energy of the activated complex G’ (see figure 2.9) and the Gibbs
free energy of the ion in solution Gg,. Isotherms, by definition, are equilibrium
measurements. Hence we usually assume that the system has come to equilibrium
such that the concentration near the electrode is equal to that in the bulk solution,

Coo- We are also implicitly neglecting the diffuse double layer (which is described
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by the Poisson-Boltzmann distribution).

do
adsorption: — = Kc(l — 9) exp <_

G, - Gsol
dt )

— (2.54)

Gl

sol

AG
Y | Cas

Figure 2.9: Diagram of energy levels for adsorption process. In this case, adsorption

is energetically favored by an amount AG, but the system must first overcome an

energy barrier G'.

Similarly, the rate of desorption is proportional to the concentration on the
surface # and another Boltzmann factor involving G’ and the Gibbs free energy of

the adsorbed ion G 4.

de
desorption: — = —Kfexp (— (2.55)

G — Gaa
dt '
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In equilibrium, these # are constant, and these two rates are equal in magnitude.

Then,
0 AGy
— = — 2.
1-6 CeXp( kT) (2:56)
where AGy = G — Gaq. This describes the Langmuir isotherm.
Langmuir Isotherms
1 T T T T
0 1 1 1 1
0 20 40 60 80 100

c (arb.)

Figure 2.10: Langmuir isotherms for various values of AGy/kT.

To make a slightly more realistic model, we assume that there is some interaction
between the adsorbates. Using a mean-field approach, let AG = AGy + ~6. If the

adsorbates attract one another, then v > 0. If they repel, then v < 0. In the case
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that v = 0, we recover the Langmuir result. Typically this isotherm is written as

%) exp(—gb) (2.57)

0
g = Cexp (—
where g = v/kT. This is known as the Frumkin isotherm. (Note that I am defining
g as following Schmickler [117], other sources [42, 24] define 2g = . My g is equal to
¢' of Bard and Faulkner [24].) Also frequently used is the Temkin isotherm, which

is just (2.57) in the # — 1/2 limit and is often rearranged like

6= éln [cexp (— Aki())] . (2.58)

The choice of which isotherm to use depends upon experimental conditions. The
Langmuir isotherm is an accurate description for small coverages (), or equivalently,
small concentrations. In this regime the adsorbates are sufficiently sparse that
they do not interact. Because of the approximation used to derive it, the Temkin
isotherm is only used for 0.2 < # < 0.8 and g not approaching zero. The Langmuir
and Frumkin isotherms are virtually indistinguishable as # — 0, and both are linear
in that regime. These two points become apparent upon expanding (2.57) in this

limit and keeping terms to second order,

AGO) . (2.59)

0+ (1+g)0” ~ cexp (— T

They are also evident from inspection of figure 2.11. Often, only the terms linear in

6 is kept, and the resulting equation is called the “linearized (Langmuir) isotherm”.
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Frumkin Isotherms
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Figure 2.11: Frumkin isotherms for various values of g. The dotted line corresponds

to g = 0, which is identical to the Langmuir isotherm.



Chapter 3

Introduction to X-ray Scattering

3.1 Introduction

This chapter provides an introduction to x-ray scattering, suitable for a first-year
graduate student studying physics, chemistry, or a related field. It covers a broader
range of material than is necessary simply to interpret the results in chapters 5
and 6. The reader may safely decide to skip ahead and return back to the specific

sections that are referenced in those chapters.

3.2 (Generation of X Rays

Early x-ray experiments were performed with x-ray tubes, and today most still are.
Presently there are at least two other available sources, both superior to tubes.
Rotating anode sources, while expensive, can easily fit within a room. Synchrotron

sources are extremely large multi-user facilities, of which only a handful exist in the

41
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world. The benefits include an enormous gain in flux and angular collimation. Both

of these sources were used for this dissertation, and I will discuss them in turn.

3.3 Conventional X-ray Sources

“Conventional” x-ray sources [57] work on the same principle as Rontgen’s original
apparatus; electrons are accelerated into an block of material (the anode), generat-
ing x-rays. While the x-ray tube of Rontgen used electrons ionized from gas, today
the electrons are produced by a high-current filament. These electrons are then
accelerated by an electric field into the anode. When struck by the electrons, the
anode produces a broad, continuous spectrum of x-rays, due to the electron decel-
eration within the anode. This is typically called bremsstrahlung from the German
“braking radiation”.

The more useful spectral components are the “characteristic” radiation lines,
which arise from electronic transitions within the anodic atoms. If an electron
kicks out an electron from an atom, the atom will be in an excited, ionized state.
Subsequently, one of the remaining atomic electrons will fall into the unoccupied
state, releasing an x-ray photon and conserving energy. Due to the quantized energy
levels, the resultant x-ray spectrum is also discrete, and characteristic of the atomic
element. The wavelengths are labeled according to the energy transition. For
instance, the K« lines correspond to transitions from L (n = 2) to K (n = 1),
the K@ from M (n = 3) to K, and La from M to L. The principal quantum

number here is denoted by n. These characteristic lines can be exceedingly narrow
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(< 0.001 A), so it is possible to have nearly monochromatic radiation for an x-ray
experiment. Sometimes it is even possible to resolve the lines even further. The
K, for instance, can split into the Ky and Kas. These correspond to transitions
from L states with slightly different energies (the fine structure).

The intensity (per dA) in the characteristic lines is higher than the bremsstrahlung
by a few orders of magnitude. Nevertheless, the flux per solid angle is low because
the radiation is spread isotropically into all directions. The overall intensity can
be boosted by using the highest electron beam current possible. In practice, this
requires both water-cooling the anode and rotating it to prevent a single focus spot
from overheating. These rotating anodes provide the highest flux presently available
in a “bench top” laboratory setting.

For the work presented in this dissertation, a Rigaku (Model RU200) rotating
anode was used primarily for orientation of samples, training, and as a testing bed
for the experiments. This instrument has a tungsten filament that can support up
to 200 mA current. The electrons are accelerated over potentials as large as 60 kV

into a rotating, water-cooled copper anode.

3.4 Synchrotron X-ray Sources

A synchrotron x-ray source begins with an ultra-high vacuum (10~° Torr) storage
ring. Within the ring are electrons circulating at near-light speeds. Whenever a
charge is accelerated (for instance, if constrained to a circular path) it emits radi-

ation. In doing so, it loses energy. To keep the electrons moving in stable orbits,
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energy in the radio frequency range is added at intervals synchronized with the elec-
tron “bunches”. While electromagnetic radiation is produced for any acceleration, it
is advantageous to place additional accelerating devices at specific locations. In our
experiments, these were simple “bending magnets” that sharply steer the electron
beam. More sophisticated devices, such as “wigglers” and “undulators” cause the
electron beam to be accelerated up and down several times within a narrow spatial
region. This leads to a corresponding increase in the intensity of the overall x-ray
beam delivered.

A brief, if dated (1979), review of synchrotron radiation can be found in [56]. An
even shorter overview is presented in [87]. A thorough and very recent (not yet in
print) account of synchrotron radiation and related devices is [77]. The remainder
of this section will use a few results derived in [130].

The most striking feature of synchrotron sources is the high degree of collimation
(unlike conventional sources, which radiate into all 47 solid angle). The “opening
angle” for the radiation is peaked sharply forward and determined by the speed of

the electrons. The full-width at half-maximum is [130]

Orpwam ~ 1/7 ) (3-1)

where
1

i

is the usual relativistic Lorentz factor [81]. For a 2 GeV beam of electrons (whose

(3.2)

rest mass is 511 eV), v &~ 4000, leading to an opening angle of fpwuy = 0.015°.

For a comparable energy resolution, synchrotrons deliver 10% — 107 times the flux
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of rotating anodes.

A second feature is that synchrotron radiation has different polarization char-
acteristics from the unpolarized conventional sources. The ratio of power in the
parallel polarization (in the plane of the synchrotron ring) to that in the perpen-

dicular polarization is
B _ 6+ @/
P, 2—(v/c)?

(3.3)
where v is the electronic speed. For a highly relativistic beam, the electric field is
mostly (by a factor of seven) polarized in the plane of the electrons’ motion.

The third feature is that synchrotron x-ray radiation has a broad, continuous
energy spectrum. The upper value is limited by the electronic velocity, but the
range is also dependent upon the characteristics of the beamline acceleration device
and “optics” within the beamline itself. Some experiments make use of the entire
multifrequency (“white”) beam. The majority (including the ones described herein)
use a monochromator to select a comparatively narrow range of frequencies. A

typical monochromator consists of one or more Bragg diffractions (3.67) from single

crystals or specially engineered multilayer structures.

3.5 Single-Electron Scattering

Although x-ray scattering is inherently a quantum phenomenon, many important
features can be correctly derived from a classical treatment [141]. A quantum
mechanical treatment can be found in [46, 112]. We will also take the nonrelativistic

limit and use Gaussian units.
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Following the general treatment in [82] assume a “free” charge of magnitude g
and mass m. This is subject to an incident electromagnetic plane wave of frequency

w, wavevector k; = kny, electric field amplitude F+, and polarization €;

E1 (t) = Elelei(kyx—wt) (34)

Bi(t) =n; x E; (3.5)

As usual for electromagnetic radiation, E;, By, and n; are mutually orthogonal.
By the Lorentz force law and Newton’s second law, a free point charge ¢ will

then accelerate as

a(t) = %Elei(kl'*w”. (3.6)

We know that accelerating charges emit radiation. Following (14.18) from [83],

the radiation field observed from a distance R along a unit vector n, is

E,(t) — %l%] (3.7)
By(t) = [ xE],, (3.8)

so the radiation will be an electromagnetic spherical wave, of the same frequency.
The “ret” refers to the fact that the quantities within the square brackets must be

calculated at “retarded” time ¢’ = t — R/c. Writing the electric field more definitely,

2
B,
EQ(t) = #El ez(kz-x—wt) ny X (IIQ X 61) . (39)

The instantaneous energy flux is described by the Poynting vector,

Cc

c
= —E, x By = —|E,|’n,. 1
S i 2 X Bo 47r‘ 2" ny (3.10)
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and the power radiated per solid angle is (3.10) multiplied by R?:

dP ¢ 5 1o
0= ER |Ey|” . (3.11)

If we define intensity as the average power per solid angle and recall that the time-

average of a sinusoidally varying function over a period is (sinwt) = , then

_/dP _C o 9
I = <dQ> = 87rR |Eo|” . (3.12)

Now think of this as a scattering process, and so define a scattering cross-section.

For the usual particle-scattering situation, this is

do  number of particles scattered into a unit solid angle per unit time

q _ e . T — . (3.13
dS) number of incident particles crossing unit area per unit time ( )

In analogy to this, we can define the relevant cross-section as
do  energy radiated into a unit solid angle per unit time (3.14)

aQ incident energy per unit area per unit time

The denominator in (3.14) is the time-averaged incident energy flux (c/87)|E;|?, so

do 5| Fe 2_ q* 2
where
P(Gl, 1'12) = |1’12 X (1’12 X 61)|2 (316)

is a factor dependent upon the incoming polarization and the observation point.

Using the vector relation

ax(bxc)=(a-c)b—(a-b)c, (3.17)
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Figure 3.1: Diagram for classical x-ray scattering

we have
P(Gl, 1’12) = |1’12 X (l’lg X 61)|2 = |(1’12 . 61)1’12 — (1'12 . n2)€1|2 . (318)

Take n; and n, to define the “scattering plane”, and define the angle 26 to lie

between them:

n; - ny = cos 26 . (3.19)

The initial polarization €; is orthogonal to n;; separate it into components € and
€, that lie parallel and perpendicular to the scattering plane. Noting that ny-€; =

a| sin(26) for an incoming plane wave polarization €; = a|€ + a €, we have
P(20) = 1 — affsin®(20). (3.20)

For an incoming wave with the electric field polarized perpendicularly to the
scattering plane (a; = 0), this polarization factor is unity. This case is applica-
ble (3.3) to synchrotron radiation (section 3.4), where the scattering plane is usually

perpendicular to the synchrotron ring. This takes advantage of the high resolution
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along that direction, determined by the opening angle (3.1). For a parallel polar-
ization (@ = 1), this factor becomes cos®(26). Conventional sources (section 3.3),
such as rotating anodes, produce randomly polarized radiation that has the factor
2(1 4 cos?(26)).

The intensity of scattered peaks also is proportional to sin(26). This factor is
a consequence of the Jacobian between angle space and reciprocal space; a volume
element in reciprocal space is smaller than its generating volume in angle space by

a factor sin(26). These polarization factors P(26) are sometimes bundled into the

“Lorentz-polarization” factor, which is just P(26)/sin(26).

3.6 Scattering from Multiple Objects

In this section, I will discuss scattering from multiple objects. By considering the
phase difference between scattered waves from spatially separated objects, I intro-
duce the structure factor. Then I discuss the connection between the structure

factor and the correlation function.

3.6.1 Fourier Transforms

I assume the reader is familiar with the use of Fourier transforms. This section
merely defines the Fourier transform as I will use it, as there is some variety in the
normalization and sign conventions in the literature.

Throughout this dissertation, the Fourier transform of a function f(r) in d di-
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mensions is defined to be

fla) = [ dr e s (). (3.21)

and the corresponding inverse Fourier transform to be

1@ = ()" [da e amsia). 3.2)

Without explicit limits, the integration should be read as taking place over all space.

4/2 normalization on each transform, and my choice of

Some authors place a 1/(2m)
assigning the e a7 to the direct Fourier transform (as opposed to e™*97T) is arbitrary.
This is the common choice in x-ray scattering texts. In quantum mechanics and

solid-state texts, the opposite sign convention is more common. From the definition

of a plane-wave

¥(q,t) = Age " (3.23)

I will likewise define the Fourier transform in the time domain to be

+00 .
flw) = / dt et f (1) (3.24)
and the inverse Fourier transform to be
1 +00 .
1) =5 / dw e f(w) . (3.25)
T J—00

3.6.2 Structure Factors

Take the cross section derived in (3.15) and let the charge g equal the charge of an
electron, —e. Defining the classical electron radius, ro = e?/mc? = 2.818 x 107° A,

we have

do 9
70 = roP(20) . (3.26)
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We see that electrons scatter x-rays only weakly (the cross section is very small).
Were it not for the large number of electrons in a macroscopic sample, and the
constructive interference under specific conditions, there would be little observable
signal. The lack of multiple scattering simplifies x-ray analysis, in contrast to some
electron-diffraction probes.

If we have a collection of N identical scatterers at various positions r;, then the

phase factors in the electric field amplitudes (3.4) and (3.9) become important. The

i(ke—ki)r

ratio Es/E; contains the phase factor e . For the collection,

2

do _ roP(26)

= (3.27)

Z el(kQ 7k1)'1‘i
i

The differential cross-section do/dS) has units of area, as all cross sections do. The
cross section, and hence the intensity, scales with N2.

The square of the sum of the phase factors is called the structure factor, and is

defined as

2

1 1 : ,
_ — — i(kz—ki)-(r;—r})
S(ke — ky) N N EZ Ei/ e . (3.28)

Z pilke—k1)-r;

%

It is common to define the “momentum transfer” q = ks — ky, in regards to
the momentum that is transferred to the scattered charge. Keep in mind that q
has dimensions of inverse length (true momentum would require a factor of h).
For elastic scattering, the wavevector of the incident and scattered waves have an

identical magnitude k£ = 27” From the simple vector addition in figure 3.2,

q = 2ksinf . (3.29)
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So we acquire the most common definition of the momentum transfer vector

g=—sinf . (3.30)

Figure 3.2: Diagram illustrating that ¢ = 2k sin §. For elastic scattering, the incom-
ing wavevector k; and outgoing wavevector ky both have length k. The momentum

transfer q = ko — ky. From [9].

If the scatterers form a continuous body rather than discrete point particles, we

can rewrite (3.28) as an integral

1 .
S(q) = N /Vd31‘1 /‘,d3r2 e ") p(r ) p(ry) (3.31)

with p(r) as the number density of electrons at position r and V' as the scattering
volume.

We can separate the integrals in the structure factor so that

S(a) = yA(a) A°(a) (332)
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where the “scattering amplitude” is

A(q) = /Vd3r e p(r) . (3.33)

If we assume that the product p(r;)p(r2) is translationally invariant, then from (3.31)
only the relative separation of r; and r, is important, and we can then shift both

vectors by —rp: ry < (r; —ry) and ro < 0

S(q) = %/V d*(ry — 15) €797 p(ry — 1,)p(0) (3.34)

and by defining the relative separation vector r = ry — ry and using p = N/V, then

S(q) = % [ v (or)p(0) (3.35)

The angle brackets denote a time-average. In general, the system will have many fast
modes of oscillation (due to thermal motion, for example). Each x-ray scattering
event is instantaneous, so in principle, a snapshot of the system could be obtained.
However, any signal large enough to be measurable will have to be integrated over
an extremely long time period in comparison to these modes. So what is observed
is the time-average of these snapshots.

We can also define a modified structure factor with the forward scattering (q =

0) removed.
5(q) = % | dr e (pl)p(0)) - No(a) (3.36)

For all practical cases, this will be identical to the standard structure factor, be-
cause the q = 0 scattering cannot be experimentally isolated from the primary,

unscattered beam. In the x-ray literature, the Nd(q) term is often neglected.
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In this treatment of scattering from multiple objects, we have taken the first Born
approximation. In our language of classical continuum fields, the scattered field does
not interfere with itself. In the quantum description, this is equivalent to each x-
ray photon scattering from, at most, one electron. The assumption of negligible
“multiple scattering” is usually valid because the numerical value of the classical
electron radius (2.818 x 107° A) is so small. This “kinematic” approximation fails
when the observed scattering becomes large. One instance of this is small-angle
scattering (@ — 0). Another is when there is a coherent superposition of fields

(Bragg diffraction).

3.6.3 Correlation Functions

I will define the two-point correlation function (also known as the pair correlation

function) as
1

9(r1,12) = 5 [(plr1)p(r2)) = (p(r1))(p(r2))] (3.37)

This characterizes the probability of finding a particle at ry given one at ry, relative
to the probability of finding a particle at ro without any conditions. This expression
gives the joint expectation value of the density at a spatial position ry and at r;. If
we think of these density elements as particles, then g(r) is the probability of finding
a particle at ro given a particle at r1. The angle brackets denote time-averaging, as
in the previous section. The time average is assumed to be equivalent to an average
over the entire ensemble of microstates available to the system.

For an translationally invariant system, (p(ri,r2)) = (p(r; — ry)), implying

g(ry,ry) = g(r; —ry). For a homogeneous system, the one-particle densities are
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equivalent: p(r;) = p(rg) = p. In general, for large enough r = r; — ry, we expect

that the particles will be uncorrelated:

lim ¢g(r) =0 (3.38)

T—00

Unfortunately, there is no standard definition for the two-point correlation function.
You will also find g(r1,12) = (p(r1)p(r2)), g(ri,r2) = (p(r1)p(r2)) — (p(r1)){p(r2))
in the literature. I prefer the definition (3.37) because it is normalized and the
function falls to zero at large distances.

From (3.36), we see that the correlation function is just proportional to the
Fourier transform of the modified structure factor. We can shift the coordinate

system to place ry at the origin. Then the Fourier transform of pg(r) is

[ e gty = = [ dr e (pp(0) — ) (O] (339)
= / dr e~ ( 0)) — p/ dr e~'aT (3.40)
- / dr =97 (p(r)p(0)) — pV6(q) (3.41)

= (S(a) (3.42)

The significance of this result is that if we could measure S(q) for all ¢, we could
completely determine the correlation function g(r). In practice, unfortunately, we
can only measure q for a limited range of angles and lengths of ¢. This limits our
knowledge of g(r).

Because it is a convenient abbreviation that I will use in section 3.10, let me

mention one more relation.

plap(-a) = { [dee s pfr) [ drea pirs)) (3.43)
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- / drdroe™ ') (p(r1) p(r2)) (3.44)

= S(a) (3.45)

3.7 Scattering from Atoms

Previously (section 3.5), we discussed the scattering from a free electron. In this
section, we consider the x-ray scattering from an atom, based upon references [2, 58,
59, 60, 142, 143]. As shown in (3.15), a particle’s cross section depends on its mass
m as 1/m?. Since the proton/electron mass ratio is over 1800, the x-ray scattering
from the nucleus is miniscule, and is usually neglected.

Ultimately, we would like to have a function, the atomic form factor, which
accounts for all the subatomic structure, and tells us how the scattered amplitude
is modified (compared with the case of a single free electron). Because this is a
common desire, these functions are tabulated in standard references [152, 1, 2].

If we consider just the electron probability density cloud p(r) surrounding the
nucleus and approximate each of the Z electrons as being free, then we arrive at

the standard form factor

sin qr
qr

folg, Z) = /dr e T p(r) = /Ooo 4rr3dr p(r) (3.46)

(The latter equality holds in the case that p(r) is spherically symmetric.) By sub-
stitution, it is clear that fy = Z for ¢ = 0. The standard atomic form factors for
the elements Pt, Cu, and Cl are plotted in figure 3.3. This f; term is the primary

component of the atomic form factor f, because for energies far above 100 eV (and
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all of the data in this dissertation were taken with x-rays in the keV range), we
can basically approximate most atomic electrons as being free; X-rays are far too

energetic to efficiently excite intra-atomic energy transitions.

Normalized atomic form factors
1.1 : : : ; ; .

1

amplitude / Z
o o
o N

o
a1

o
~

0.3

q(A™

Figure 3.3: Standard atomic form factors fy(¢), normalized by atomic number 7,

for Pt (solid), Cu (dotted), and Cl (dashed). Note that f;(0) = Z. From [151].

However, the free-electron assumption is only an approximation, and fails most

noticeably near “adsorption edges”. When the x-ray energy is tuned close to an
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absorption edge, it can eject a core-level electron from the atom. (This is related to
the electron-induced ionization discussed in section 3.3).

Deviations of the measured form factor f from fy are known as as “anomalous
dispersion”. Typically, this modification to the amplitude is separated into a real
term f'(E, Z) and an imaginary term f"(F, Z). The latter term allows for a change
of phase in the scattered beam and is manifested as absorption. Physically, the
anomalous dispersion arises from the resonance of the incident x-ray with differences
between atomic energy levels.

Summarizing the various terms that comprise the atomic form factor f(q, E, Z):
(@, E,Z) = folg, Z) + f(E, Z) + f"(E, Z) + fnr (3.47)

where fy7 is the nuclear Thomson scattering, usually neglected. The scattering
amplitude from an atom is the amplitude from a single free electron, multiplied
by this atomic form factor, f(q, E,Z). Here E is the energy of the incident x-ray
photon, Z is the atomic number, and ¢ = 47” sin f (equation (3.30)) is the momentum

transfer (discussed in section 3.6.2).

3.7.1 Absorption

Absorption of x-rays is caused by an incident x-ray striking an atom and causing a
core level electron to be ejected [61]. This is simply the photoelectric effect, which
is usually presented in the context of ultraviolet photons incident upon the outer
shells. Historically, this was one of the most dramatic experiments leading to the

quantum paradigm. After the photoelectron is ejected, the atom is in an excited
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state. Just as described in section 3.3, an electron will fall into the vacated state
and emit a characteristic x-ray; this process is called “fluorescence”. Because the
electron falls from an atomic level and not from the vacuum, the fluorescence energy
is always less than the energy of the absorbed x-ray.

Empirically, the absorption of x-rays by matter is observed to be
I, = Iyexp(—pz) (3.48)

where p is proportional to the electronic density. At these large x-ray energies, the
phase (solid, liquid, gas) of the material is unimportant, except in its effect upon
the mean density. The more fundamental quantity (and the one most frequently
tabulated) is the mass absorption coefficient y/ p,,, where p,,, is a mass density. Since
x-rays scatter from atoms, it is sufficient to add up the elemental contributions to

determine a molecular compound’s mass absorption coefficient, as

L (ﬁ) (3.49)

pm 5 Prm

where w; is the weight fraction of element .

The absorption coefficient p; peaks dramatically near energies that correspond
to the absorption edges. Following each edge is a branch of the absorption curve
following the form [62]

1/ pm = kX3 Z3 (3.50)

where k is a constant that has a different value for each branch. An illustration is
provided in figure 3.4. For this fictitious element, the edge is at A = 2A.
In order to minimize absorption, we used an incident x-ray energy of 8800 eV,

near the bottom of the absorption branch, but sufficiently far from the Cu K
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Figure 3.4: An illustration of a mass absorption coefficient vs. wavelength. This is
intended only for illustration, so it corresponds to no element. The sharp drop in

intensity is known as the absorption edge.
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(8979 eV) edge. This choice of energy also reduced fluorescence from the Cu atoms

that occurs at or above the absorption edge.

3.8 Crystals

A Bravais lattice is the set of points that can be reached from a single point by
applying translation vectors. These translation vectors are called “basis vectors”
and are equal to the number of dimensions of the space of the lattice. For real
crystals described by Bravais lattices, there are three basis vectors. Calling these

basis vectors a,, a,, a,, the Bravais lattice consists of the set of vectors {R},
R = nza, + nya, + n.a, (3.51)

where ng, ny, n. span all the integers.

Any Bravais lattice also has a reciprocal lattice [10], which is the set of plane
wave vectors {q} that have the same periodicity as the Bravais lattice. That is,
ot — gia(Rix) o)

R =1 (3.52)

As the symmetric nature of (3.52) makes clear, the reciprocal lattice to the reciprocal
lattice is just the original direct lattice. In other words, the (direct) Bravais lattice

in real space and the reciprocal lattice are dual.
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3.9 Diffraction from Crystals

3.9.1 Infinite Crystal

Consider an infinite array of point charges

p(r) = ; i(r—R) (3.53)

where R are the Bravais lattice vectors. But for simplicity, let’s begin with the case
of an infinite one-dimensional crystal. The lattice vectors are R = ja, where j runs

over all integers, so the scattering amplitude is

Ag) =Y ewn= 3 (emme) = 3 (e9) 43 (emioe) (3.54)
i j=—00 =1 =0
Ordinarily, we would use
(o] n 1
nz;;x =1 (3.55)

but this fails the requirement |z| < 1 for convergence. However, we can multiply
e "% by a small correction factor e * where p > 0 and take the limit y — 0T after

the sum is taken. Then the sums in (3.54) converge to
A(q) = 0(gja — 2nm) = §(¢R — 2nm) (3.56)

where n is any integer. This mathematical device has a basis in physical reality.
As discussed in section 3.7.1, all crystals absorb some fraction of the x-rays that
diffract through them. Other processes that cause a finite scattering intensity are

grouped under the term extinction [144].
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The calculation for a three-dimensional crystal is just a trivial extension of the

one-dimensional case. Take a Bravais lattice as

p(r)=>6(r-R)= ; d(ry — jpag) O(ry — jyay) 0(r, — j,a,) (3.57)

where {R} corresponds to {jy, jy, j. }-

Alq) = Z e taR (3.58)
R
— Z e—i%jmam e_iQyjy“y e_i‘hjzaz
{.7:0 ajy a]z}
— Z e_iQmjmam Z e_iQyjyay z e—iqzjzaz
Jz Jy Jz
= 6(gza, — 2Hm) 0(gyay, — 2K) 6(q,a, — 2L7) (3.59)

For nonzero A(q), we thus require the Laue conditions

qza, = 2mH (3.60)
qa, = 21K (3.61)
q.6, = 2mL (3.62)

where the indices H, K, L span all of the integers. These conditions define a lattice
of points in reciprocal space. These points are just the reciprocal lattice described

by (3.52), as we can show with a simple example. The vector q is just

q= qwq\w + Qy(/]\y + q,zq\z (363)

where the ¢; represent arbitrary unit vectors that form a basis in reciprocal space.
For simplicity, take

i - Gi = 0ij , (3.64)
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although we could make some other choice. Then

qa-R = nga,q, +nyayq, +n,a,q, (3.65)

= 2mHng, +2rKn, + 2rLn, . (3.66)

This is equivalent to e’® = 1, the definition of the reciprocal lattice (3.52). We
might choose another basis for §;, instead of (3.64), but q - R will remain the same.
So, the diffraction pattern from a Bravais lattice is its dual reciprocal-space Bravais
lattice.

Take d as the projection of a given R along q. This d is the distance between
two planes of the lattice. From q- R = ¢d = 2n7 and the definition of ¢ (3.30), we
recover Bragg’s law:

nA = 2dsin . (3.67)

3.9.2 Lattices with a Basis

In this dissertation, we will be most concerned with the structure of platinum. This
is a face-centered cubic crystal, which can be visualized as a cubic crystal with an
extra atom at the center of each of the cubic faces. Some crystal structures are
not Bravais lattices!, for example, silicon and diamond. They can, however, be
described as a face-centered cubic crystal with another face-centered cubic crystal

superimposed upon it. The second lattice has a relative displacement of 1/4 along

T will not discuss quasicrystals, fascinating systems wherein the diffraction pat-
tern exhibits (at least) five-fold symmetry. This implies that the real-space structure
cannot even be even remotely described by a (three-dimensional) Bravais lattice.
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the cubic body diagonal. The “diamond structure” is described by vectors that run
over the Bravais lattice, but also include the basis vector for this displacement.
Although the face-centered cubic structure is a Bravais lattice, it is convenient
to describe it as a simple cubic lattice with a basis. The basis vectors in this case
describe the atoms on the faces. For a simple cubic crystal with basis vectors aZ,
ay, and aZ, the displacement basis vectors that generate the face-centered cubic

crystal are

d = 0 (3.68)
d, = g(ﬁi+y) (3.69)
d, = g(g+2) (3.71)

For a crystalline sample, we can divide the space into unit cells that are repeated
over all Bravais lattice vectors. Then we can consider the scattering from one unit
cell and replicate it over the Bravais lattice. For the face-centered cubic crystal, the

scattering amplitude due to one cube is

4
A(q) — Zeiq-d = 1+ ein(H—I—K) +€i7r(H—|—L) 4 ein(K—}-L) (372)
i=1
= 1+ (DT + (-1 4 (1) (3.73)
= 4 if H K, L all odd or all even

0 if H,K,L mixed

So the diffraction pattern will be identical that of a simple cubic lattice, except that

intensity at H, K, L values which are all odd or all even will be enhanced, and the
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intensity at other H, K, L values will be extinguished.

3.10 Thermal Effects and Inelastic Scattering

This section is based upon [11, 63, 145, 146, 47]. Consider an ideal crystal as
in (3.53),

p(r) = ; i(r—R) (3.74)
The structure factor from a Bravais lattice is found by applying the definition of

the structure factor (3.32) to the scattering amplitude from a Bravais lattice (3.58),

S(q) = Y e fa®R) (3.75)

R,R/

To consider an inelastic scattering process, take the dynamical structure fac-

tor [8]

1 oo : -
S(qw) = N/—oo dt /Vd?’rl/vd?’rQ et rimra bWt b 4 — 0)p(ry, t)

= e (pap-a,0), (3.76)

and allow the atoms to oscillate about their respective mean positions such that
their instantaneous positions are R + u(R). Then,

1

Sla.w) =+

S IR [ g g ) (g)

RR'

Take the harmonic approximation, which is that u(R) has a Gaussian distribution
(appendix A). Specifically, use the result (A.13) to evaluate the product in the

angle brackets:

() iau®A)y _ =R o~ b{au® 1) e uR)lau® ) (3.78)
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The Debye-Waller factor W(q) is defined as

W) = 5 (la u®)P) = lla-u® ) = (a-u©), (379

and then the structure factor is
S(q,w) =e W /dt et Ze—iq-Re([q-U(O)][q-U(R,t)]) ) (3.80)
R

Expanding the exponential e{lau(@llau®D the zeroth-order term (replacing the

exponential with unity) yields

S(q,w) =e 2V /dt ety eraR (3.81)
R

which evaluates to
S(q,w) =¢e " §(w) ) d(q—G) (3.82)
G
where {G} is the reciprocal lattice to {R}. This is just the elastic scattering from
Bragg peaks derived in previous sections. So the net effect of the small thermal
motions is to lower the Bragg peak intensities by a factor of e 2. The widths,
however, are unchanged.

The extra intensity goes into the other modes, which are the higher-order terms
in the expansion of the exponential. The scattering from these modes is called
“thermal diffuse scattering”. The successive terms in the expansion consists of zero,
one-phonon, two-phonon, etc. processes. While the zeroth-order term is elastic, all
the others are not. The first-order thermal diffuse scattering has a discrete energy
spectrum, while the second-order and higher terms are smooth functions of scattered
x-ray energy [12]. The second-order thermal diffuse scattering has the same intensity

as Compton scattering, and is often ignored.
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It is often difficult to separate out the elastic from the inelastic terms, because
of the poor relative energy resolution in x-ray detection. The incident x-ray energy
is on the order of keV, while the thermal excitations are on the order of kgT,
1/40 eV at room temperature. In practice, we are accepting such a broad range of
energies that all energy transfers are selected. This is equivalent to performing an

integration of (3.76) over all energy transfers w

[dwstaw) = [do~ [7 dee (plapp(-a,1) (3.83)

= [ @ set@n(-a,) = (pla)p(-a))

Thus, x-ray diffraction measures the static structure factor automatically. Although
sometimes called elastic scattering (because there is no energy dependence), this is
a misnomer. In fact, we are integrating over all energy transfers w, not selecting

out the elastic (w = 0) term.

3.11 X-ray Scattering from Surfaces

X-ray scattering from surfaces is usually presented in either of two ways. In sec-
tion 3.11.1, I present the method of truncating an infinite crystal, popularized by
Robinson [111]. The following section (3.11.2) describes the more traditional ap-
proach from classical electrodynamics. The final section (3.11.3) establishes the

connection between these two approaches.
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3.11.1 Truncating the Infinite Crystal

This section builds upon the treatment of the infinite crystal in section 3.9, and

extends it to semi-infinite and finite crystals.

Semi-Infinite Crystal

In analogy with (3.54), consider an ideal semi-infinite crystal. One face of the crystal
is presumed to be truncated at = 0 while the opposite “end” stretches to infinity.
As before, we begin with the one-dimensional case, which illustrates the relevant
behavior.
X 1
— —igja _
A =2 e =1—=g

=0

(3.84)

Note that the sum over j now runs from 0...00. Like the infinite crystal (3.56),
this function is infinite-valued for ga = 2nnw. Unlike the infinite crystal, (3.84) has

non-zero values everywhere else. The structure factor has a minimum value of 1/4:

(@) = |A(@)) =~ — (3.85)

sin? %
Finite Crystal

Now, we truncate the crystal at both ends, so that it is a one-dimensional crystal
containing N scatterers.

Using the relation

N-1 . 1— .’L'N
> o= (3.86)
n=0
then
N-1 idia 1— e—ina
Alg) =Y e = T (3.87)
§=0



70

and
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Figure 3.5: Graph of =% vs. z, for N = 10.

The structure factor here is just like the diffraction intensity from a diffraction

grating with N slits (shown in figure 3.5). Near the Bragg diffraction peaks (qa —

sin Nz

sna. = V. Because the crystal is finite, the structure factor

27n), the limit lim,_,¢
maxima are now N2, not infinite. The minimum value is zero, which is also in

contrast with the semi-infinite crystal, but identical to the infinite crystal.
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The extension to three dimensions is straightforward [111]. Consider a three-
dimensional crystal with N;, N,, N, scatterers in the z, y, z directions. The
scattering amplitude is then

Ng—1 Ny—1 N,-1
A(q) — (Z eijacQ'a:z> (2 eiqu-ay> (Z eiqu-az> (3.89)
je=0 iy=0 j=

Each factor is just a geometric series, which may be summed to yield

eiqu-am -1 ez'Nyq-ay -1 eiqu-az -1
A(q) = ( e’iQ'aa: . 1 > ( eiq.ay _ 1 ) ( eiQ'az _ 1 ) (390)
The structure factor is just S(q) = A(q)A*(q), so
.21 .21 tn2 1
sin“ = N,q - a, sin“ =N,q - a sin“ =N,q - a,
s(q)z( _pq )( "5 Nya )( ~pq ) (391)
sin® 5q - a, sin” 5q - a, sin” 5q - a,

Taking the N, — oo, N, — oo limit but holding N, finite, we obtain a physically

reasonable depiction of a crystal surface.

i QLNZ T dy
M) (3_92)

= (qpa, — 2H™) § —2K -
S(a) (¢za ) 8(gyay ) ( Sin? %q_az

In comparison with the infinite crystal, the two Laue conditions (3.60) on ¢, and
¢y are maintained, but the condition on ¢, has been relaxed. Where the final Laue
condition ¢,a, = 27 L holds, a Bragg peak will exist. The difference is that there
is still residual scattering at other g,. The resultant intensity is sharp in g, and g,
but diffuse along ¢,. These rods of scattering that arise from the truncation of the
crystal lattice are thus known as “crystal truncation rods” (CTR).

As mentioned in section 3.9.1, absorption and extinction limit the x-ray scat-
tering intensity. Because of this finite penetration depth, even a truly semi-infinite

crystal will scatter like a finite crystal. A reasonable order-of-magnitude for N, is
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1000, given a penetration depth ~ 1um [111]. Figure 3.6 plots (3.92), proportional

to the intensity along a CTR.

3.11.2 Reflectivity from Smooth Surfaces

An alternative treatment is to consider x-ray scattering from a surface as an example
of the more general problem of reflection and refraction at a boundary between two
dielectric media. Since x-rays are just electromagnetic radiation, this should be
perfectly valid. For the moment, however, we neglect the atomistic nature of the
sample and assume it to be a smooth, continuous structure. The atomic periodicity

can be added in later (section 3.11.3).

Fresnel Equations

Consider a smooth interface between air (n = 1) and a block of amorphous material
(n < 1 for x-rays). This ties into the classical electrodynamic treatment described
by Jackson [84], with ' — n, n — 1, and p = p/. Jackson uses 6;, the angle
between the incident beam and the surface normal. For consistency with the rest
of the dissertation, I write results in terms of its complementary angle o between
the incident beam and the surface.

Then the component of the electric field perpendicular to the plane of reflection

are
E_f _ 2sin o (3.93)
Ey sina+v/n?—cos?a
E* _ sina —vn? — cos’a (3.94)

Ey sina++vn? —cos?«
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Figure 3.6: A logarithmic plot of S(q) vs. ¢, as given in (3.92) for N, = 1000. This
is the same function shown in figure 3.5, but with a larger N,. Also, a finite resolu-
tion function has been convolved through the data. This eliminates the numerous
minima seen in figure 3.5, and is reasonable from an experimental standpoint. The
minimum value is near 1/2, because (sin®x) = 1/2. Without the convolution, the

minimum value is zero.
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n<l

E,

Figure 3.7: Diagram for the Fresnel equations.

and the parallel components are

E_t” _ ‘ 2n sin o (3.95)
Ey n?sina+ vn? — cos?a

El  n’sina—vn?—cos?a (3.96)
Ey  n2sina++/n? — cos2 a '

The Fresnel reflection and transmission coefficients are plotted in figure 3.8. If

n < 1, as we will show is true for x-rays incident on most materials, then there
exists a critical angle o, such that n = cosa,. For a < a, cosa > n, so the square
roots become imaginary and the magnitude of E,./Ej is unity for both polarizations.

This is termed total external reflection.

Index of Refraction

While a long derivation of the index of refraction can be found in Warren [147], a
simpler and more illuminating treatment can be found in Jackson [85]. I will not

repeat the entire model here, but just connect the results to our discussion.
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Figure 3.8: Fresnel reflection and transmission coefficients. In this example, a,. = 1°.

The transmission is sharply peaked at the critical angle, then quickly falls to unity.
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For large enough photon energies (hw), the dielectric constant approaches the

“plasma limit” and

€(w) ® 1 —w/w? (3.97)
where the “plasma frequency” is
wl = 4rNZe*/m (3.98)

Here, N is the density of atoms per unit volume and Z is the atomic number. The
index of refraction is defined as n = ,/u€ and we can assume that y ~ 1. Since the

refractive index is close to unity, we can expand the exponential

1w? 27N Ze?

Using w = 2me/), the classical electron radius 7y = €?/mc?, and the electronic

density p = NZ, we find that the index of refraction is

25
=1—rp=—=1-94 3.100
n To o ( )

Our assertion that 6 < 1 will hold true in all cases, as demonstrated for a practical
example in section 3.11.2.
The critical angle is defined by n = cos .. By expanding the cosine to second

order in the critical angle (which should be small), we obtain

2\ /2
o, = (20)Y2 = <r0%> (3.101)

Critical Angle Calculations for Platinum

As an example, the critical angle for platinum is calculated in this section.
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The atomic weight of platinum, W, is 195.078 g/mol, its atomic number Z =

3

78, and the mass density p,, = 21.090 g/cm®. Hence, the density of electrons in

platinum is

_ meNA

o = 5.078 x 107em ™ = 5.078A7° (3.102)

where N, is Avogadro’s number (6.022 x 10%3).
For a Cu K« emission line, A = 1.54 A, so § = 5.401 x 107° by (3.100) and
a. = 1.04 x 1072 (radians) by (3.101). Note that § < 1 as claimed previously. This

is true even for this extreme example of a high Z, high mass-density material.

3.11.3 Scattering and Reflectivity

There are some apparent disparities between the results of the CTR, theory (sec-
tion 3.11.1) and the classical Fresnel reflectivity (section 3.11.2). The former pre-
dicts Bragg peaks connected by crystal truncation rods. Given no adsorption and a
truncated infinite crystal, these Bragg peaks are predicted to have infinite intensity.
The Fresnel formulae have no Bragg peaks or truncation rods, and the intensity
maximum saturates at unity below the critical angle.

The Fresnel treatment cannot predict Bragg peaks, because the scattering media
is assumed to be a solid block of constant density. The CTR treatment assumes
a perfect crystalline lattice. If we extend the CTR treatment to consider contin-
uous, homogeneous media, then integrals will take the place of summations. The

scattering amplitude is

A(q) = / dr e~ 97 p(r) . (3.103)
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A semi-infinite block of material, truncated at z = 0, will have a density profile

p(z) = poO(2) (3.104)

where ©(z) is the Heaviside step function. Integrating by parts will not work,
because X cannot be defined. However, following [37], we consider the sign

function

-1 <0
S(z) = (3.105)

+1 >0

The Fourier transform of S(z) can be found by considering the function e~25()

and then taking the ¢ — 0 limit.

00 . 0 . o0 .
/ dx e"%e IS @) = —/ dz (17107 +/ dz e~(+10 (3.106)
—0 -0 0
1 1
= — 3.107
t—1q + t+1q ( )
2
0 T (3.108)
q

Since ©(z) = 3(S(z) + 1), and the Fourier transform of unity is a delta function,

then Fourier transform of the step function ©(x) is finally

, 1 1
—1qz2 = — —
/dz e "*0(z) i + 2(5(qz) : (3.109)

Then the structure factor (and the intensity) will be proportional to 1/¢?. The
%(5((12) may seem unimportant. We can show that it is significant by proving a

familiar result [126]. Noting that

O(z) +0(—2) =1 (3.110)
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then

/ dz e7'% = / dz e_iq“z@(z)—i-/ dz e7*0(—2)

= 0(q.) (3.111)

In fact, even without knowing (3.109), one can show just from (3.110) that if F'(¢,) =
[, dz e7#0(z), then F(q,) + F(—q¢.) = 0(q.)-

The result S(g,) o< 1/¢? can be obtained in two other ways. Taking the contin-
uum limit @ — 0 of the semi-infinite structure factor (3.85) yields this directly. The

second method is to follow [124] and consider the structure factor (3.31) again:

S(q) = %/V d’ry /V d’ry ¢ 1T (p(ry)p(r,)) (3.112)

Transforming these volume integrals to surface integrals,

1 1

S(a) = N @ e /S (dS; - 1) /S (dSs - ) e " T1=r2) () p(rsy)) (3.113)

where dS;, dS, are differential surface vectors constrained to lie along the surface.

The choice of unit vector 7 is arbitrary. If we take 7 = Z, then

1 1 )
S(a) = N g /S dzy dy, /S dzy dys e 1T (1) p(ry)) (3.114)

and S is a constant-z plane.
Throughout this chapter, I have implicitly used the “kinematic” theory, which
assumes that the first Born approximation holds. Because x-rays interact very

weakly with matter, the approximation is valid for most points in reciprocal space.
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However, at Bragg points (where Bragg’s Law is satisfied) and near the (000) re-
ciprocal space point, the Born approximation breaks down. That is why the CTR
treatment fails to predict the existence of the critical angle or the finite intensity
for a semi-infinite crystal.

However, we can show the equivalence of the two approaches far from (000), in
the large-a limit. Starting with (3.94), rewrite cos? @ = 1 — sin® .. Since n? — 1 is

very small, we can approximate the terms within the square roots by

1/2 21
[sin2a+(n2—1)] / = sina+ o

(3.115)

2 sin o

Then (3.94) becomes

EX n?2-1
L= 3.116
Ey 4sin? o ( )

‘ 2

The reflectivity coefficient R = ‘ETL /Ey| is proportional to 1/sin*a. Since ¢, =
2k sin o from (3.29), R o< 1/¢%. The CTR intensity falls with 1/¢?, however. This
apparent contradiction can be resolved by comparing the definitions of the reflectiv-
ity coefficient R and the differential cross-section do/d2. The reflectivity coefficient
considers the total “reflected” energy and the total incident flux. In contrast, the
differential cross section is normalized by the incident flux (proportional to 1/ sin «)
scattered into a unit solid angle (also proportional to 1/sin ). When these factors
are taken into account, do/d) = Rsin® .

To incorporate the Fresnel coefficients into simple kinematic x-ray scattering,
multiply each amplitude, both incoming and outgoing, by E;/E, as in (3.95) or
(3.93). Because n is so close to unity, it hardly matters which polarization is as-

sumed. From (3.29), ¢, = 2ksina and then defining (¢,). = 2ksina,, we can
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simplify (3.93) to be
Bt 2
Eo  14+/1-((2)e/2.)?

For a < «, in addition to total external reflection, we also have the simplification

(3.117)

1 1
that % = 2sina/ sin .. So the scattering amplitude will be multiplied by ]Z—to(a)
and %(ﬂ) These transmission factors are often neglected except near the critical
angle a., because they factor approach unity quickly as o > a, increases (see

figure 3.8a).



Chapter 4

Experimental Procedures and

Apparatus

4.1 Introduction

In this chapter, the specific procedures and apparatus used in these experiments
are documented. First, the sample preparation protocol is described. The next
section details the electrochemical apparatus and procedures. The following section
describes the x-ray scattering apparatus, and the timing apparatus is discussed

thereafter. Finally, suggestions for future improvements are made.

82
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4.2 Sample Preparation

4.2.1 Procurement

Samples (nominally Pt(111)) were obtained from the Materials Science Center
growth facility in Bard Hall. These samples were oriented through Laue back re-
flection, and then cut to the desired orientation by electrical discharge. Then, they
were polished with SiC paper and Al,O3 powder down to a grit size of 0.25um until
a mirror-like surface was obtained.

In principle, this procedure should produce crystals with well-oriented faces.
To allow large terraces to form on metal crystals, it is desirable to reduce the
miscut angle between the crystallographic axis (e.g., (111)) and the surface normal.
However, miscut angles as large as 2° were measured in our lab by a combination
of laser reflection and high-resolution Bragg diffraction. These can be traced to the
Materials Science Center crystal mounting apparatus, which was insufficiently rigid

to ensure a miscut smaller than a few degrees.

4.2.2 Miscut Calculation

In this section, the angle § = (20)/2 is the Bragg diffraction angle, while ¢ is a
rotation angle about the surface normal. On a miscut crystal, the Bragg diffraction
peak will not be coincident with the surface normal. The angle between them is
defined to be 7.

The surface normal was aligned with the ¢ axis as follows. By reflecting a laser

beam from the mirror-like face of the crystal, a tight spot was cast onto a far wall



84

or ceiling. Rotating the crystal about ¢ caused the laser beam to trace out a cone,
causing the spot to trace out a corresponding ellipse on the wall. By adjusting the
tilt stages on the sample goniometer, the ellipse could be narrowed until the spot
did not move with ¢. Then, the surface normal was well-aligned with the ¢ axis.
Moving the ¢ angle to some fiduciary value, such as 0°, the Bragg diffraction
angle # was recorded. Then, ¢ was set to 180° and a different 6 was found. These
two angles differ because the diffraction peak traces out a cone, similarly to the

laser beam. The projection of the miscut along this one axis is (see figure 4.1)

27, = [0(¢ = 0°) — 0 = 180°)] . (1.1)
A n
Ox

q(ep =0) q (¢ = 180)

Yx | Yx

Figure 4.1: Determination of Miscut Angle

Likewise, by taking measurements at ¢ = 90° and ¢ = 270°, the orthogonal

projection of « is measured,

27, = |0(6 = 90°) — 6(¢ = 270°)] . (1.2)
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By inspection of ¢, in figure 4.1, ¢, = ¢sin+y, (and ¢, = ¢siny,), so the true miscut
angle is found from

siny” = sin 2 + sin 75 : (4.3)

4.2.3 Sample Preparation

After the miscut of each platinum crystal was measured, it was mounted onto the
orienting/polishing apparatus shown in figure 4.2. The apparatus consists of a
cylindrical barrel (E), with three dowels mounted on it (C). (Only two dowels are
shown in the figure.) These form one half of the “kinematic mount”; the other
half is a thick disk (B), into which the dowels press. Opposite the first dowel is a
circular depression (G), opposite the second is a groove (H), and opposite the third
is just the flat surface of the disk. One of the dowels is fixed; the other two can
be raised and lowered my means of small adjustment screws running through the
barrel. These permit the disk to be oriented by a few degrees in any direction with
respect to the barrel axis. A long screw (D) attached to a spring and knurled knob
(F) runs through the barrel axis and passes through the clearance hole (I). When
tightened, the orientation is securely fixed. Finally, a mushroom-shaped tip (A)
fastens to the kinematic disk (B) with three screws. The sample fits on to the end
of this tip.

To prepare a sample, the tip of the apparatus was detached from the main
body, and then placed on a hot plate. A crystal-bonding compound, liquid at
high temperatures, was dabbed onto the tip before the platinum crystal was added.

After cooling, the compound solidified to form a rigid, yet reversible, bond. The
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Figure 4.2: Diagram of orienting/polishing apparatus. (a) Side view. (b) Bottom

view of the stage (B), showing the kinematic mount. Labels are described in the

text.
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tip was secured to the apparatus, and placed at the center of a rotation of a four-
circle diffractometer. The orientation screws were adjusted until the (111) Bragg
diffraction peak was constant in @ for any rotation ¢ about the barrel axis. When
this was attained, the locking thumb screw was secured and the entire barrel was
placed within the polishing sleeve. The great advantage of this apparatus is that
it can orient the sample face to high precision, lock in that orientation, and then
polish without loss of precision.

Polishing took place on a polishing wheel (Ecomet 4) run at the slowest speed
(50 revolutions per minute). Each polishing step took 15 minutes, and the sample
was thoroughly cleaned with water between steps. The polish began with sandpaper
(Buehler 600 grit Carbimet paper discs #30-5112-600) and then successively finer
(6um, 3um, 1ym, 0.25um) diamond powder (Struers DP-Spray, P) on a nylon cloth
(Buehler #40-7072) with some lubricant (Struers DP Lubricant Blue, HQ or Struers
DP Lubricant Red, HQ). At the end of this process, a mirror finish was invariably
obtained.

Thereafter, the tip was unscrewed from the apparatus and warmed on the hot
plate to remove the sample. The sample was then immersed in hot nitric acid for at
least four hours. This was done to remove any remaining contaminants, particularly
polishing powder. Also, even the smallest powder size (0.25um) is extremely large
on the length scales that x-rays probe. To remove strain and small grooves in the
crystal surface, it was annealed in a gas flame (available on tap in Clark Hall) for
at least one hour. Finally, the sample was characterized and the miscut calculated

as described above.



88

Figure 4.3 demonstrates the dramatic improvement that can take place after a
sample is annealed. This sample was annealed for one hour with a propane torch.
For comparison, both intensities have been normalized to yield a peak value of unity.
Without this, the post-annealing peak would dwarf the pre-annealing peak. The
true peak intensities differ by a factor of 23. The full-width at half-maximum was
0.60° before annealing and 0.032° after annealing, a factor of 19.

After several iterations of this orienting-polishing-annealing procedure, the bulk
mosaic of the platinum crystal was ~ 0.018° (full-width at half-maximum) and the
surface normal was oriented to within 0.027° of the (111) direction. Empirically, we
have found that both the mosaic and the miscut must be small in order to observe
the incommensurate overlayer. Furthermore, a high quality substrate enhances the
quality of voltammetric profiles. The development of this procedure was crucial to
the success of this experiment. It has also propagated to other groups (Cooper, Ho)
in Clark Hall, and has enabled them to improve surface quality and signal-to-noise

ratios in their own data.

4.3 Electrochemical Apparatus and Procedures

4.3.1 Solutions

Most of the solutions were prepared by Lisa Buller, and the following paragraph is
paraphrased from her dissertation [52].
All solutions were prepared using water purified by a Hydro purification train

and a Millipore Milli-Q system. The ionic salts were used as received and always the
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Figure 4.3: Mosaic scans, before and after annealing, normalized to unit peak height.
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purest available. Perchloric acid solutions were prepared by dissolving either CuO
(99.999%, Aldrich) or CuCly (99.999%, Aldrich) in Ultrex perchloric acid. The
addition of chloride anions was achieved through the addition of CuCly or NaCl
(99.999%, Aldrich). All solutions were bubbled for at least 15 minutes with pre-
purified nitrogen, which was further purified by passage through oxygen-absorbing
(MG Industries Oxisorb) and hydrocarbon (Fisher Scientific Activated Carbon 6-14

Mesh) traps to remove all traces of oxygen.

4.3.2 Three-electrode Electrochemical Cells

A typical well-designed electrochemical cell has three electrodes [118, 43, 44]. The
guiding principle is to have all the interesting behavior occur at the working elec-
trode. The other electrodes should be relatively inert and not complicate the anal-
ysis of the processes that occur at the working electrode. All potentials must be
measured relative to some other reference value, which is provided by the refer-
ence electrode. The perfect reference electrode would be “ideally nonpolarizable”.
That is, its potential remains constant, regardless of the amount of current passing
through it. Another purpose of the reference electrode is to ensure that an applied
potential change does what we expect. Suppose we change the voltage of the po-
tentiostat by AV. How do we know that this causes a AV at the working electrode
and that part of the AV does not go into the reference electrode? If the reference
electrode is ideally nonpolarizable, it maintains the same potential value, and the
full AV is effected at the working electrode interface.

The counter (or auziliary) electrode assists in this process. If the reference elec-
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trode is passing a significant amount of current, then the assumption of ideal non-
polariziability is sorely tested. It is preferable to have an alternate, low-resistance,
pathway through which most of the current flows. Counter electrodes are often
composed of inert metals and have large surface areas to minimize their overall
resistance.

The various electrodes used in our experiments are shown in figure 4.4. The
large (10 mm) electrodes used for the simultaneous in situ x-ray and electrochemical
measurements are labeled by (a). The smaller (1-2 mm) “ball” electrodes, labeled
by (b), were produced by members of the Abruna group. These were of excellent
quality, and produced good electrochemical signals. However, they were too small
and too difficult to orient to be of use in our x-ray measurements. A Ag/AgCl

reference electrode is labeled by (c). These were constructed by Lisa Buller [52].

4.3.3 Hanging Meniscus Cell

For electrochemical experiments on single crystals, a hanging-meniscus cell is ideal.
A wire is spot-welded to the sides of the crystal face, as in figure 4.4(a,b). The face
of the crystal is then dipped into the solution compartment (see figure 4.5), and
pulled upwards so that only a meniscus connects the sample with the bulk of the
solution. The reference and counter electrodes are placed in another compartment,
connected by a frit (partially fused glass).

The advantage of this arrangement is that only the crystal face of interest in
contact with the solution. Also, it is easy to use small (a few mm diameter) crys-

tals, which are often better quality than large (10 mm diameter) crystals. The
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Figure 4.4: Electrodes used for the electrochemical measurements. (A) 10 mm
diameter electrode. (B) 1-2 mm diameter electrode. (C) Ag/AgCl saturated-NaCl

reference electrode.
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disadvantage is that the cell must remain in a fixed vertical configuration; this re-
quirement is incompatible with most x-ray diffractometers. We used this cell only

for voltammetric and current transient measurements.

4.3.4 In Situ X-ray cell

To perform simultaneous electrochemical and x-ray measurements, we constructed a
cell similar to the one developed by Toney and coworkers [113]. This is a reflection-
geometry cell, as shown in figure 4.6. The entire sample is immersed in solution,
unlike the hanging-meniscus cell. The solution is contained by 6um polypropylene

film, held in place by an O-ring.

polypropylene
film

o

Figure 4.6: Cartoon of in situ electrochemical x-ray cell.
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A detailed illustration of the cell is provided by figure 4.7. The majority of the
cell is Teflon (Kel-F is an alternative material with greater strength). The sample is
placed in the center and held in place by two non-circular Kel-F screws that squeeze
the sample laterally. The sample and screws are raised with respect to a trough,
where most of the solution resides. The reference electrode is inserted from the side.
The counter electrode is a platinum wire that circumnavigates the trough several

times.

Absorption

The x-ray reflection geometry places a limit on the in situ x-ray cell. The polypropy-
lene film is extremely thin, and while contributing to the diffuse x-ray scattering
background, does not We must incorporate the absorption of x-rays due to the layer
of solution that is covering the sample.

Consider an adsorbing layer of thickness [ and attenuation per unit length pu.
From figure 4.8, the total path length of x-rays through the solution layer will
be x = I[sina + [sin 3, where « is the angle of incidence, and 3 is the angle of
reflection. For grazing incidence (small «), [ is limited by the horizontal dimensions
of the sample. In the specular (o = (3) case, we have x = 2l sin «.

From the relation ¢, = “T sin v (3.30) and the absorption relation for the inten-

A

sity I = Ipe™"* (3.48), then

X
I =1Ijexp (—%,uqz> : (4.4)

For aqueous solutions, the absorption coefficient can be calculated from (3.49):
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Figure 4.7: Detailed plans for the in situ electrochemical x-ray cell, prepared by

Lisa Buller [52].
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Figure 4.8: Absorption through a layer of thickness [/, given incident angle o and

reflected angle S.

p = 9.848 cm™! for Cu Ka radiation (A = 1.542A) and p = 1.061 cm~! for Mo
Ko radiation (A = 0.711A). The 1/e absorption length is 1.0 mm for Ko and
0.942 cm for Mo Ka. Clearly, using high energy x-rays greatly reduces the problem
of absorption.

For an typical L = 1.5, ¢, = 1.387A and A = 1.542A, even | = 1mm of solution
causes an attenuation of 40%. It is therefore important to remove as much solution
from the cell as possible, while still leaving enough to maintain good electrical

contact between the face of the working electrode and the other two electrodes.

4.3.5 Potentiostat

A potentiostat is an instrument to keep the sample under potential (voltage) control
and monitors the current. (A galvanostat, in contrast, keeps the sample under

current control and monitors the voltage.) The simplest possible potentiostat circuit
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for a three-electrode configuration is shown in figure 4.9.

The operational amplifier will supply sufficient current to keep the reference
electrode at a potential —V with respect to ground (or the working electrode). Sig-
nificant current will pass from the counter into the working electrode, but very little

will pass through the reference electrode. This is in accordance with section 4.3.2.

BN
/

ctr
ref

\ work

Figure 4.9: Simple potentiostat circuit for a three-electrode electrochemical cell.

Adapted from [21].

The PAR 283 (Princeton Applied Research, Model 283) is a versatile instrument,
which can be run as either a potentiostat or a galvanostat. It accepts commands
over a GPIB (IEEE-488) interface, and has its own sophisticated, if unique, com-

mand language. During most experimental runs, we used the PAR 283 to acquire
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either cyclic voltammograms (described in section 5.2) or chronoamperometric tran-
sients. Cyclic voltammograms were taken of each sample while the solution layer
was extended, when the solution was pulled out, and at various points during the

experimental run on a given sample.

4.3.6 Safety

In a dilute (0.1 M) form, perchloric acid poses a minor health hazard. Contact with
skin is mildly irritating, and should be rinsed off as soon as possible. Contact with
the eye is more serious. For this reason, splash goggles should be worn at all times.
In case of a large spill, sodium bicarbonate should be available for neutralization.
The platinum sample glows yellow-white during annealing. There is a significant
ultraviolet spectral component, and the sample needs to be kept under continual
supervision. To prevent permanent retinal damage, ultraviolet-resistant goggles

must be worn during this process.

4.3.7 Sample Treatment

Before a sample is inserted into the x-ray cell, a careful protocol must be observed.
UPD is extremely sensitive to chemical contaminants, especially metallic and or-

ganic ones.

e Spot-weld a clean platinum to the side of the sample, if not already present.

e (Clean the top of the cell with solution; it should bead over everything. Then

drain it away.
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Rinse the cooling cell with solution at least three times, draining with forced

nitrogen.

Have nitrogen flowing into the cooling cell.

Flow solution into the cell, allowing a bubble to form on top of the cell.
Put the hood (which should have nitrogen flowing through it) over the cell.
Wear goggles to prevent retina burn.

Anneal for 8 minutes the first time, 5 minutes each subsequent time.

Cool in cooling cell for 4 minutes (under nitrogen overpressure).

Flow solution into the cooling cell; fill to the level of the input port. Immerse

the sample for at least one minute; a longer period is acceptable.

The platinum surface will oxidize very quickly. The next step must be done

very quickly!

Remove the sample from the cooling cell and transfer it to the x-ray cell. To
buy time, it is often helpful to squirt some solution or (deoxygenated) water

on the face.
Tighten Kel-F screw to fix sample in place.

Cover with polypropylene film, which should be pre-rinsed. Cover with the
O-ring and metal sleeve. Screw down the four jeweler screws evenly, for even

pressure along the O-ring.
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e The rest potential (no external potential applied) should be near 650 mV.

e With solution layer extended, run a cyclic voltammogram from 650 mV to

200 mV at 5 mV/s.

e With a syringe, pull out most of the solution and run an identical cyclic

voltammogram.

The cooling cell used in the previous procedure is shown in figure 4.10. The
Pt(111) sample is shown hanging from its hook. During operation, nitrogen is kept
flowing through the cell. Solution is drained from the bottom outlet, and introduced

from either of the upper inlets.

4.4 X-ray Apparatus

X-ray scattering is a nearly ideal probe of the ordering kinetics of the two-dimensional
overlayers found in UPD systems. Unlike electrons or neutrons, X-rays can pene-
trate through a thin solution layer, allowing the experiments to be performed in situ.
X-rays provide structural information on atomic length scales without perturbing
the system with mechanical probes or large fields, as scanning probe microscopes
may. Finally, the extremely high flux from a modern synchrotron x-ray source, such
as the National Synchrotron Light Source (NSLS), permits the weak diffraction sig-
nal from a single Cu—Cl bilayer to be studied at high resolution.

In our experiments, the white beam produced by a bend magnet on the NSLS

electron storage ring was focused in both transverse directions by a total external
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Figure 4.10: Drawing of cooling cell.
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reflection mirror. A monochromator consisting of two Ge(111) crystals was config-
ured to select 8.80 keV x-rays. The substrate was placed in a thin film geometry
x-ray cell similar to those used by Toney and coworkers [113]. The cell was placed
at the center of rotation of an Eulerian cradle and two pairs of XY-slits between
the sample and the detector determined the resolution of the scattered x-rays. The
resolution is discussed in detail in section 5.5.

In the lab, x-rays were produced by a Rigaku (Model RU200) rotating Cu anode
source. The Cu Koy was selected by means of either a single or triple-bounce Si(111)
monochromator. Although the instrument can provide a 60 kV accelerating voltage
and 200 mA filament current, the lowest power setting (20 kV, 10 mA) was usually
sufficient for sample orientation.

To detect x-rays we used an integrated Nal scintillation crystal, photomultiplier,
and preamplifier (Bicron 1XMP 040B-X). The resulting electrical signal was sent
through a combined amplifier and pulse-height analyzer (Canberra Model 1718) for
broad energy discrimination. The TTL pulses were then sent to a simple adding
memory module (Kinetic Systems 3610 Hex Counter) that also received timing
pulses from another module (Kinetic Systems 3655 Timing Generator).

In the lab, the signals were then acquired by a data acquisition card (DSP 6001).
At the NSLS, data acquisition was handled by a CAMAC to SCSI interface module.
In both places, the four-circle diffractometer (Huber) was under the control of a
sophisticated software package (“spec”, by Certified Scientific Software) running on

an Intel 486-based computer.
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4.5 Time-Resolved Measurements

Time-resolved x-ray measurements can be accomplished in several ways.

For instance, Bergmann et al. [32] used the timing of the electron bunches
around the synchrotron ring for Mossbauer experiments. This is ideal for extremely
short time ranges. Very recently, Knight et al. [88] have demonstrated a prototype
device etched onto a silicon wafer to study protein folding. This works by mixing
two jets together (for instance, folded protein and a denaturing agent) and squirting
the product through a long channel. Because the flow is lamellar, the mixing occurs
by diffusion. Because the fluid volumes are extremely low (nanoliters), the diffusive
length scale is extremely short, and the mixing time is on the order of microseconds.
By moving the device along the x-ray beam, different times after the mixing event
are examined. In this way, position and time are coupled.

In contrast, our method relies upon timing electronics to separate the x-ray signal
into various time bins. This “stroboscopic” method was first used by our group to
study charge-density wave kinetics [127]. Although the PAR 283 claims to have
a trigger, it does not operate in the standard sense of the term. Normally, when
an instrument (an oscilloscope, for example) is waiting for an electronic trigger,
operation ceases until the trigger is detected. Then, the other operations are begun
or resumed. Instead, the PAR 283 performs a variety of operations, periodically
polling the input to see if the trigger signal has arrived. Only then is the specified
series of actions initiated. This can lead to an unpredictable delay between the

trigger input and the initiation of commands by the PAR 283. For this reason, it
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was decided to have the PAR 283 be the master controller and send trigger signals
to the other instruments.

The control diagram is shown in figure 4.11. The potentiostat applies a volt-
age to the sample and continuously reads current from it. At the beginning of a
voltage cycle, it sends a trigger pulse to the waveform generator (Keithley 3940
multifunction synthesizer). This sends a series of pulses to the multichannel scaling
averager (DSP 2190), which consisted of a multichannel scaling module (DSP 2090)
and a signal averaging memory (DSP 4101). These bin pulses both initiated the
averaging memory and incremented the current memory location (time bin). These
timing modules also received x-ray intensity data, which was added to the time bin.
At the end of a series of voltage cycles, the memory was dumped to the computer
for display and analysis. The chronoamperometric traces (current vs. time) were
digitized into 5000 time bins, and collected by the potentiostat. At the end of the

voltage cycle, these were also sent to the computer.

4.6 Future Improvements

4.6.1 New Cell Design

With the advent of high-energy synchrotron sources, x-ray cell geometries with
a thick solution layer have become feasible. Brossard et al. [49] describe a cell
very similar to ours, but without the thin solution layer constraints. The cyclic
voltammetry measurements they present are not high quality; presumably, this is a

function of sample preparation, and not the cell itself.



106

commands

>

current vs. time | potentiostat

<

s V
I
X-ray trigger
intensity pulse
Vs. time
G
&
.| | multi-channel function
scaler generator
A -
bin pulses

Figure 4.11: Instrumentation for timing experiments.
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4.6.2 Improved Sample Quality

As discussed in section 4.2.1, these crystals were not ideal. The simplest course
would be to procure samples from a reliable external source. If annealing is still
necessary, a new method should be found. Heating with a torch sometimes produced
cloudy spots in the center of the sample, where the flame was hottest. A more even

annealing could be done in ultra-high vacuum and by attaching it to a heating stage.

4.6.3 Area (or Linear) Detectors

In our experiment, the highest resolution (section 5.5) was obtained by rotating the
sample about the surface normal. In this case, an area or linear detector would
not be helpful. However, there may be cases in which the resolution is sufficient
to simply have an area detector mounted on the end of the detector arm. A CCD
(charge-coupled device) could be run in a mode such that each line is shifted down.
In this case, all of the time-resolved data could be recorded on the device, which

would speed up the data acquisition time by the number of g-points.

4.6.4 Improved Electronics

In retrospect, the PAR 283 potentiostat was difficult to program, and not as flexible
as anticipated. A superior solution would be to purchase the best possible analog
potentiostat (BAS is an good choice) that accepts an external line voltage. Then
buy a good programmable digital-to-analog card that can be programmed easily

and has sufficient time resolution.
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It may also be advantageous to replace CAMAC modules with cards within the
computers. At the time of these experiments, we needed to maintain compatibil-
ity with equipment at CHESS and NSLS X20A. Now, the DSP timing modules
could be replaced with a multichannel scalar card (Oxford MCS, for instance). The
counter/timer modules could be replaced with an integrated counter/timer card
(Keithley CTM-010). These particular upgrades are already underway for the new

spectrometer being set up in the Brock group laboratory.



Chapter 5

Cyclic Voltammetry and Static

X-ray Measurements

5.1 Introduction

This chapter begins the presentation of our data on the underpotential deposition
(UPD) of Cu onto Pt(111) in the presence of Cl. The first section presents our
cyclic voltammetry on this UPD system. Subsequent sections discuss the hexagonal
coordinate system and the structure of the incommensurate UPD overlayer. Finally,

our static x-ray measurements of this overlayer are presented.

5.2 Cyclic Voltammetry

Cyclic voltammetry, as the name suggests, is a measurement of the current while

the voltage is being swept (usually linearly with time). The cyclic adjective refers

109
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to the fact that the voltage is swept in both directions. As a function of time, the
applied voltage traces out a triangular wave (figure 5.1a).

Cyclic voltammetry is a commonly used technique in electrochemistry, with
many different applications. The next section illustrates a simple example: the
cyclic voltammogram from an adsorption / reduction reaction, where the adsorp-
tion follows a Langmuir isotherm. In our experiments, this technique provided

information on the equilibrium phase diagram.

5.2.1 Cyclic Voltammetry for an Ideal System

This section follows the theory presented in section 2.8. It may be helpful to review
that section before continuing.
As suggested by Bard and Faulkner [31], consider the reduction of species O at

the electrode to form species R.
O+ne” = R. (5.1)

We begin at a sufficiently positive potential such that all of the adsorbates are in
the oxidized state (O). At ¢ = 0, we sweep the potential negatively and monitor the
current generated at the electrode. We want an expression for the current density
j(t) in terms of the voltage AV (t) and the (constant) sweep rate v. For reduction,
we must sweep in the negative direction, so d(AV)/dt = —v.

The current density comes from the reaction (5.1), so

dar dar’
j(t) = —ne—2 = nev——o . (5.2)




111

200

100

voltage (mV)
o

—-100¢

—-200
0

current (arb.)

-0.3 ; ; '
—-200 -100 0 100 200
voltage (mV)

Figure 5.1: (a) Applied voltage waveform. (b) Current response for an ideal system.
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To find an expression for ' (), assume the reaction is completely reversible, so that

the Nernst equation (2.41) applies:
kT

In practice, this assumption means that the v must be very small in comparison
with the reaction rate. Rewriting (5.3) to find the ratio of concentrations at the

electrode surface,
co(z =0,t) ne

!
= - . 4
=0 =P 7 (AV = AT (5.4)

Assume there are no adsorbate-adsorbate interactions, except for the O — R reac-
tion and the competitive filling of adsorption sites. If there were only one species

on the electrode, then we would use the Langmuir isotherm (2.56)

cexp (—4¢)

0=T/Tgat = 1+ cexp (_%) |

(5.5)

When there are two species, O and R, competing for adsorption, then this becomes

AG
0o =To/Tosat = o (_ kTO) : (5.6)
’ 1+ coexp (— Akcéo) + cr exp (—A,CC%R)
So the ratio of surface excesses is
AG
o _ col'o sat €XP (_k—TO) _ boco (5.7)

I'p crl'g sat €XP (—%) ~ brer

where the abbreviations bo and bg are introduced for simplicity. Combining (5.4)

with (5.7) the ratio z is

I'o bo [
— = —~exp
r br

ne

kT

z (AV — AVO’)] . (5.8)
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Since we assumed that I'gr(t = 0) = 0, then [p(t) + ['r(t) = Lo(t = 0) for all ¢.

Then
To = Lot = 0)— (5.9)
EEEE A '
and now taking the derivative
ol'o ox x
=To(t=0 . 5.1
aavy = Tl = gy T ap (510)
Substituting (5.10) into (5.2) and replacing z,
2.2 b0 exp [2E(AV — AV
j= 7;; ol(t = 0)—2& b [§7( ) (5.11)

5 -
{1 + 2—% exp [k—T(AV — AV})’)]}
Finally, we want to find the full-width at half-maximum. Start with the simplified

function

Z

y(z) = rep (5.12)
We want to find z such that y(z) = y(0)/2 = 1/8. Substituting z = e* and
solving the resulting quadratic equation 2> — 6z +1 = 0 yields z = 3 + /8, or
x ~ +1.7627 (which is symmetric about z = 0, as expected). Thus the full width
at half-maximum of (5.11) is approximately 3.5255 x kT'/(ne), or about 90.6/n mV

at 25°C.

5.2.2 Cyclic Voltammetry for Cu/Cl1/Pt(111) UPD

The voltammetric profile is shown in figure 5.2. These data were collected in our
x-ray scattering cell at 5 mV /s with 0.1 M HClOy as a supporting electrolyte, 1 mM
Cu?* and 10 mM C1~. The current response exhibits two sharp and well-defined

voltammetric deposition peaks centered at about +0.47 and +0.32 V (vs. a Ag/AgCl
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reference electrode). Upon reversing the potential sweep, the current response then

exhibits two sharp stripping peaks corresponding to the reverse reactions.

O
=

(&)

o

& current (mA)

=

200 300 400 500 600
voltage (mV)

Figure 5.2: A cyclic voltammogram taken in the x-ray scattering cell at a sweep

rate of 5 mV /s with 1 mM Cu?* and 10 mM Cl~, and 0.1 M HCIO, as a supporting

electrolyte.

A schematic of the deposition process is depicted in figure 5.3. The labels A,
B, C in this figure also correspond to the potential regions in figure 5.2. At the

rest potential (region A), chloride anions are adsorbed on the platinum surface in
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a non-ordered fashion [158, 108]. As the potential is swept negatively, copper is
electrodeposited onto the platinum surface at a well-defined potential [90, 149, 94].
The electrodeposited copper and chloride ions together form an ordered Cu—Cl
bilayer structure incommensurate [131] with the platinum surface (region B). If the
potential is then moved further in the negative direction, there is further copper
deposition, creating a full, commensurate copper monolayer (region C) [94, 90,
156, 157, 95, 72]. The copper monolayer is, in turn, believed to be covered by a
disordered layer of chloride anions. On the reverse (positive-going) sweep the reverse
processes take place; that is, some copper desorbs, forming the CuCl lattice structure
(region B) and at more positive potentials the copper is completely stripped from the
surface, leaving the disordered chloride anions adsorbed on the surface and returning
the system to region A. The sharp voltammetric features seen in Figure 5.2 are the
electrochemical signature of a clean and well-ordered surface.

In our experiments, we used cyclic voltammetry for three purposes. Most im-
portantly, it served as a qualitative “fingerprint” of the UPD process itself. The
cyclic voltammograms are extremely sensitive to contamination of the solution, poor
quality of the single-crystal electrode surface, and dissolved oxygen in solution. Em-
pirically, we found that obtaining a good cyclic voltammogram was a necessary, but
not sufficient, condition to finding a well-ordered UPD layer with x-ray scattering.

Secondly, the width of the peaks tells us an important fact about this UPD
process. As derived in section 5.2.1 and plotted in figure 5.1b, the full-width at half-
maximum of the current peak should be close to 90.6/n mV at room temperature.

The fact that our peaks are significantly smaller than this value implies that there
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Figure 5.3: Cartoon of phases in the UPD of Cu on Pt(111) in the presence of Cl.
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is significant interaction among the adsorbed ions in the UPD layer. In particular,
once some ions are adsorbed/desorbed, this tends to enhance the probability that
other ions will follow.

Thirdly, unlike figure 5.1b, the peak positions for the negative voltage sweep are
displaced from their partners on the positive voltage sweep. This hysteresis, which
is present even for very slow sweep rates (1 mV/s), is an indication that the system
is kinetically limited. The reason for this, which had been unclear, is explained by

our time-resolved data in chapter 6 in terms of a nucleation and growth model.

5.3 Hexagonal Coordinates

The remainder of this chapter concerns x-ray scattering from the platinum surface
and the incommensurate CuCl overlayer. For cubic crystals, the basis vectors are
usually defined to be mutually perpendicular and of equal length (like the z, v,
and z Cartesian axes). When dealing with the (111) surface of a face-centered
cubic lattice, however, it is convenient to redefine the basis vectors. The ¢ axis is
defined to be along the (111) surface normal. Because of the ABCABC... stacking,
the reciprocal space (111) is mapped onto (003). The a and b real-space basis
vectors, which lie in the plane of the surface, are shown in figure 5.4a. Because
these basis vectors subtend 120°, these are often called “hexagonal surface units”
[75]. The circles in the figure represent platinum atoms on the (111) surface. These
real-space lattice sites are indexed in figure 5.5.

From the convention (3.64) that @, - §; = d;;, b* is orthogonal to a and c, and
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O O O . 2

Figure 5.4: (a) The Pt(111) surface with surface lattice vectors a, b, which are

perpendicular to ¢ = (111). (b) Reciprocal lattice vectors corresponding to the unit

cell chosen in (a); a* and b* subtend 60° and are perpendicular to c*.

a* is orthogonal to b and c. So a* and b* must point in the directions indicated
in figure 5.4b. These vectors subtend 60° and generate a triangular lattice. The
reciprocal-space lattice sites are indexed in figure 5.6. Although this figure appears
superficially identical to figure 5.5, the indexing is different due to the different
angles subtended by the basis vectors. From this point on, Bragg peaks are indexed
using these hexagonal units.

The conversion from cubic to hexagonal units is easily accomplished. Writing
both g-vectors as column vectors, then the matrix product qcybic = Jh—cQhexagonal

and Qhexagonal = Je—hQhexagonal- L hese transformation matrices are

—4 -2 1

Jhﬁc=§ 9 -2 1 (5.13)



and

-1 10
Jeooh = 0 —1 1
2 2 2
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(5.14)

where, of course, JnycJesn = 1. These matrices can be generated from any two

non-collinear vector transformations, such as (111) — (003) and (111) — (101).

o (0 (@ & &
OEOBONONONO
G @ 0 @ @

SIS GG

a (lattice units)

Figure 5.5: Indexing of surface units in real space.
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Figure 5.6: Indexing of surface units in reciprocal space.
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5.4 Discussion of Incommensurate Structure

Tidswell and coworkers [131] have characterized the incommensurate bilayer that is
present for intermediate potentials. They found a triangular array of x-ray scatter-
ing rods, sharp in H and K but diffuse in L. The in-plane spacing was approximately
0.765 that of the truncation rods from the underlying platinum crystal. This corre-
sponds to an in-plane bilayer lattice spacing 30% greater than Pt(111). Based upon
their measurements of the positions and intensities of these scattering rods, they
propose the model shown in figure 5.7. The Cu and Cl form a bilayer wherein the Cu
atoms (small gray circles) are close to the Pt surface (large gray circles), and the Cl
atoms (large empty circles) rest above the Cu, coordinated in the three-fold hollow
sites of the hexagonal Cu lattice. If the Cl atoms are partially ionized toward CI™
(making them larger), it is reasonable to assume that they are in close proximity
to one another and determine the incommensurate lattice spacing. Tidswell et al.
claim that the spacing is near to that of close-packed spheres with the Cl~ ionic
radius.

It is surprising that the bilayer structure fails to follow the commensurate lattice
spacing, yet preserves the orientation of the underlying Pt lattice. However, this
scenario has been predicted by Novaco and McTague [103]. They hypothesize static-
distortion waves (analogous to charge-density waves) in cases where the adlayer is
weakly adsorbed to the substrate. Minimizing the energy leads to a preferred ori-
entation of the adlayer with respect to the substrate. The relative orientation angle

need not be zero. Shaw, Fain, and Chinn [122] experimentally observed Ar mono-
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Figure 5.7: Real-space map of the incommensurate overlayer, looking down on the
Pt (111) surface (gray). The Cu atoms (black) lie above the Pt substrate and are
incommensurate with it. The Cl ions (hollow) lie in three-fold hollow sites above

the Cu layer.
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layers adsorbed onto graphite substrates at a range of low temperatures (32 — 52
K). Their LEED (low-energy electron diffraction) measurements demonstrated the
relative orientation angle was inversely related to the Ar monolayer lattice spacing.
Their previous measurements with other adsorbed noble gases find cases where the
relative orientation is zero, as in our case. A complete review on this subject can
be found in the Pokrovsky and Talapov [110]. Ben Ocko and coworkers [104] have
studied a commensurate-incommensurate phase transition in Br UPD on Au(100).
Their results are compared with theoretical predictions by Pokrovsky and Talapov
[109].

Our interest is primarily in the kinetics of this system, rather than performing
more detailed crystallography on the static phases. Therefore, it is necessary to
find a useful parameter to monitor the emergence of order during formation of
the bilayer. We chose the (0.765 0 L) rod, because it is the lowest index peak.
Our choice of L = 1.5 depends upon two factors: the minimization of background
scattering from solution and polypropylene film, and the L-dependent scattering
from the bilayer itself. Absorption effects (section 4.3.4) are most prominent for
low L, as is the diffuse background scattering. The bilayer scattering oscillates with
L, as can be seen from examining the structure factor.

As mentioned above, the scattering is diffuse along the ¢, axis. This is a con-
sequence of the nearly two-dimensional nature of the adsorbed layer. However, the
spacing between the Cu and Cl layers causes an interference effect that is manifested
in the oscillating intensity along ¢,. A single two-dimensional layer of hexagonally

arranged atoms has a six-fold rotation axis about the surface normal. Add a second
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commensurate layer with the same number of atoms, by putting a chloride atom at
position R + a for every copper lattice position R. Assuming that these chlorides
are attracted to the copper layer, they will probably sit in the three-fold hollow
sites between copper atoms. At this point, the symmetry is broken and the bilayer
is only three-fold symmetric.

To derive the structure factor, we need to find the coordinates of the three-fold
hollow site. Consider the location of the three-fold hollow site between (0,0), (1,0),
and (1,1). Referring to figure 5.8, and recalling that the center of an equilateral

triangle is 1/3 of the distance from a side to the opposite vertex, the position is
10+ éu 2) = (% %) (5.15)
Now we turn our attention to the phase factors that influence the structure
factor of the bilayer. We can consider the two-dimensional CuCl bilayer as though
it were in isolation. The underlying Pt lattice has no fixed periodicity with respect
to it, and so will not change any of the structure factors except at the specular

condition H = K = 0. As shown in section 3.9.2, the structure factor due to the

addition of another atom is
2

S(a) = (5.16)

n
Z eiq-aj
j=1

The Cl atom sits at the three-fold hollow site, and using ¢ = 27 /a(H, K) from (5.15),

the structure factor at L = 0 is

2 4 2H + K =3n n any integer

o
S(H,K,L=0)=|1+exp ?(QH—%K)

1 otherwise
(5.17)
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Figure 5.8: Real space image of bilayer. The open circles represent the positions
of the copper atoms, and the closed circles represent the positions of the chloride
atoms. In reality, the chloride atoms occupy considerably more space than the

copper atoms, as shown in figure 5.7.
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This leads to a hexagonal lattice expanded by a factor of v/3, and rotated by

30°, as shown in figure 5.9.

CuCl with Cl in hollow sites

o o =4 o o =4 o o

o o =4 o o =4 o o

-4 -3 -2 -1 0 1 2 3 4
H (reciprocal lattice units)

Figure 5.9: Reciprocal space map of monolayer (circles) and bilayer (crosses). The
monolayer points correspond to figure 5.6. The bilayer points incorporate the L = 0

structure factor from (5.17).

Now consider the L > 0 scattering. Due to the three-fold symmetry, the points
(0 0), (1 0), and (0 1) illustrate all of the possible cases. (The (1 1) is equivalent

to the (0 0).) These structure factors are plotted in figure 5.10. As expected,
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they follow a simple sinusoidal form, but the initial phase at L = 0 is determined
by (5.17).

The careful reader will note that I have neglected the atomic form factors of
Cu and Cl (that depend upon the ionization state, which is not known), and the
“Debye-Waller” factors due to disorder within the Cu—Cl bilayer. However, in my
opinion, there is a larger uncertainty that makes these considerations moot. The
illustration in figure 5.9 is only one of two possibilities. The six-fold symmetry was
broken by the assumption that the chloride atoms fall into the upward-pointing
triangles of figure 5.5. We can equally well imagine that the chloride atoms fall
into the downward-pointing triangles. This is equivalent to just a 60° rotation and
changes the structure factors accordingly.

The three-fold hollow site immediately above (along the y-axis) from the origin
in figure 5.9 is 3(1 2). (This is not shown in the figure, because we previously took

the other choice.) The resulting structure factor is

2mi 2 4 H+2K =3n n any integer
SH,K,L=0)= 1+exp7(H+2K) =

1 otherwise
(5.18)

We see that the roles of H and K are reversed from (5.17).

Even more likely is that there will be some combination of these two possibilities.
As the incommensurate bilayer forms, different domains nucleate and grow on the
surface (see chapter 6). There will be domains with both possible orientations.

These domains are likely to be incoherent; that is, there will be no definite phase
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Figure 5.10: Structure factors for various the (0 0) (solid), (0 1) (dotted), and (1 0)

(dashed) rods as a function of g,.
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relationship between them. The overall intensity will be the sum of the intensities
from all the domains. This intensity is shown in figure 5.11, which assumes an equal
coverage for the two domain types. As can expected from the sum of two sinusoidal
functions, the period of the oscillation is changed. The (0 1) and (1 0) structure
factors are identical, since we are taking equal numbers from the two domain type, so
H and K are identical. Of course, due to the stochastic nature of the nucleation—
growth process, the distribution may be skewed toward one orientation over the

other, instead of the 1 : 1 ratio depicted here.

5.5 Static X-ray Data

Because of the conflicting reports of the CuCl overlayer structure at intermediate
voltages, our first task was to make some static x-ray measurements. We have
observed the overlayer structure numerous times during several experimental runs.
Despite many attempts, we have never found scattering at the (0.25m 0.25n L)
rods that can be attributed to the incommensurate overlayer, where m and n are
integers up to 6. On the other hand, we have found scattering at the (0.765 0 L) and
(0 0.765 L) rods that was voltage-dependent. This indicates that the measurements
of Tidswell et al. [131] are correct, while the LEED measurements of Kolb [102]
cannot be confirmed. Assuming that the (0.75 0 L) seen in the LEED corresponds
to the (0.765 0 L) peak, then the additional peaks may be the result of multiple
electron scattering. Alternatively, the er situ experiment may change the ordering

of the CuCl overlayer. This would not be surprising, as the vacuum and solution
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Figure 5.11: Structure factors for various the (0 0) (solid), (0 1) (dotted), and (1 0)

(dashed) rods as a function of ¢,. The (0 1) and (1 0) coincide.
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environments are very different.

Figure 5.12 shows the (0.765 0 1.5) overlayer Bragg peak at two different values of
the applied potential. These data clearly demonstrate the presence of the incommen-
surate overlayer at 350 mV and its absence at 250 mV. The potential-independent
background is due to scattering from the solution layer and the polypropylene film
that contains it. By integrating for several seconds per g-point, the signal can be
easily resolved above this background. In the time-resolved measurements (chap-
ter 6), where the x-ray signal is split into many time bins, this poses a considerable
experimental challenge.

The shape of the diffraction peak is well-fit by a Lorentzian line shape (the solid
line in figure 5.12), and the half-width at half-maximum A corresponds to a corre-
lation length & = 1/A ~ 280A. A Lorentzian is appropriate for systems with only
short range positional order. The inset indicates the location of the Bragg rods of
the two-dimensional incommensurate overlayer (hollow) and the crystal truncation
rods (section 3.11.1) of the Pt substrate (filled). The arrow represents the trans-
verse scan shown in the main figure. The transverse direction is denoted by q, and
is orthogonal to (0.765 0) and at constant L.

The corresponding x-ray scans through the overlayer Bragg peak, but along the
radial direction, are shown in figure 5.13. The radial direction is denoted by q) and
holds K and L constant. In this case, the peak is broader than scans through the
q. direction. At first glance, this appears to indicate that the correlation function
is strongly asymmetric, with £, > . This would be a surprising result. However,

as the next paragraphs will show, this can be accounted for by the asymmetry of
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Figure 5.12: Scattered intensity at g = (0.765 0 1.5) + g at 350 mV (hollow) and
200 mV (filled) vs. Ag/AgCl. The solid line is the best fit to a Lorentzian line

shape.
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the resolution function.

The asymmetry of the resolution is due to the differing longitudinal and trans-
verse resolutions. Figure 5.14 depicts the elements of the scattering geometry that
determine the resolution. A variation in 6 = %(20), the scattering angle between k¢
and k;, causes q to trace out the major axis of the resolution ellipse. A variation
in the magnitudes k; and ky, due to a variation in the Oye,m striking the monochro-
mator, causes q to trace out the minor axis of the resolution ellipse. As shown in
the figure, the longitudinal q and transverse q, directions are not exactly coinci-
dent with the major and minor axes of the resolution ellipse, but are rotated by
0 with respect to it. A careful consideration of the resolution function is required
for extremely high-resolution experiments [45]. For this relatively low-resolution
experiment, the relative rotation is neglected.

As already used, “perpendicular” (q,) and “parallel” (qy) refer to vectors in
the a*, b* plane (constant L). The term “longitudinal” refers a direction along the
scattering vector q, while “transverse” is the direction orthogonal to this, but still in
the scattering plane. At this point in reciprocal space, the q, direction corresponds
to the transverse direction. The q direction corresponds closely to the longitudinal
direction, but is slightly different because of the constraint that L remain constant
in q.

The longitudinal resolution is found by differentiating the definition of ¢ (3.30),

dq = 4; cosf 66 . (5.19)

In order to maximize the empirical signal to noise ratio, we used longitudinal (cor-
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Figure 5.13: Scattered intensity at q = (0.765 0 1.5) 4+ q; at 350 mV (hollow) and

200 mV (solid) vs. Ag/AgClL The solid line is the best fit to a Lorentzian line shape.
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Figure 5.14: Cartoon of resolution function. (Created by Joel Brock.)
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responding to 26) slits 2.0 mm wide . This produced a resolution of A(26) = 0.20°

(full-width at half-maximum). The transverse resolution is found to be

5QJ_ =4q Hbeam (520)

where A(20peam) = 0.012° (full-width at half-maximum) is determined by the open-
ing angle of the synchrotron (3.1).

To confirm these calculations, we also measured x-ray intensities through the
(10 L) crystal truncation rod (CTR) at the same L = 1.5 and q_, q directions as
in figures 5.12 and 5.13. X-ray scans through the CTR and the overlayer rod are
shown in figures 5.15 and 5.16. The top panel of each figure illustrates the intensity
data, normalized to the beam monitor. The scattering from the overlayer is barely
observable in comparison with the CTR scattering. This is not surprising, because
the CTR intensity falls as ~ 1/(q, — go)?, where qq is the Bragg peak position, and
L =1 for this rod. The bottom panels illustrate the same data, but normalized to
unity so that the widths may be compared. The overlayer rod is broader than the
CTR in each figure.

The calculated resolutions and measured peak widths are summarized in ta-
ble 5.1. Each quoted value is a full-width at half-maximum. The first and third
columns are calculated longitudinal (5.19) and transverse (5.20) resolutions for the
CTR and overlayer rod. The second and fourth columns are measured widths of
peaks in the shown in the previous figures for the ¢, Ag, and H, Ag directions.

It may seem surprising that the measured width dgg for the CTR is less than the

calculated resolution dq. However, this is just an indication that H is not collinear
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Figure 5.15: Comparison of the (1 0) crystal truncation rod (filled) and the (0.765 0)
overlayer Bragg scattering rod (hollow) at L = 1.5. Both are measured in the q

direction and at 350 mV. The overlayer peak is barely visible near ¢ = 317.6.
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Figure 5.16: Comparison of the (1 0) crystal truncation rod (filled) and the (0.765 0)
overlayer Bragg scattering rod (hollow) at L = 1.5. Both are measured in the q

direction and at 350 mV.
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Table 5.1: Summary of measured peak widths (dg, dg,) and calculated resolutions

(0g, dq.). All values are full-width at half-maxima.

peak 6q (A7Y) | dgu (A1) | gL (A1) | 6gp (A1)

Pt(111) CTR | 14.7x 1073 | 7.1 x 1073 | 0.31 x 1073 | 2.5 x 1073

CuCl overlayer | 15.0 x 1072 | 18 x 1072 | 0.25 x 1073 | 7.1 x 1073

with the longitudinal direction. Referring to figure 5.14, a cut through the resolution
ellipse along a direction other than the major axis (the longitudinal direction) will
always produce a more narrow profile.

As indicated, the resolution function is extremely asymmetric, with dg > dq, .
By comparing dqy and dq, the overlayer rod is seen to be resolution-limited when
measured along q. However, the overlayer rod is found to be very well-resolved
along q; by comparing dgs and dg,. From this consideration, widths from scans
of the overlayer along q; (figure 5.12) can be considered intrinsic to the CuCl
overlayer itself, and a correlation length of ¢ ~ 280A can be quoted without resort
to deconvolution.

The width of a CTR is related to the terrace size, but in a complicated way. For
a self-affine surface (where there is no intrinsic length scale parallel to the surface),
then the CTR width at the anti-Bragg position (midway between two Bragg peaks)
is inversely proportional to the mean terrace size. When there is a characteristic
surface length scale, the CTR width is in general a function of that length scale
as well. In this case, the relationship to terrace size is specific to the correlation

function which generates that length scale. As expected, the overlayer rods in our
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experiment are always significantly broader than the CTRs. This suggests that
the terrace size is not the primary limitation on the mean island size. Without a
separate and very careful surface crystallography experiment, however, this cannot

be definitively proven.



Chapter 6

Kinetic Measurements

6.1 Introduction

In this chapter, simultaneous electrochemical and x-ray scattering measurements
of the ordering kinetics of the Cu—Cl bilayer during the transition from the com-
mensurate copper overlayer to the incommensurate bilayer are reported. First, the
time-resolved data are presented. Then, a simple theory for the nucleation of the
incommensurate phase is described. The subsequent section presents data to sup-
port this model. Next, the entire ¢—t data set is presented, followed by a theory to
describe it. The data is analyzed in the context of this theory, and excellent agree-
ment is found. The final sections concern alternate models and further theoretical

explanations.
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6.2 Time-Resolved Data

To observe the ordering kinetics during stripping, we employed a simple signal
averaging technique. An example of the square-wave potential cycle that we applied
is shown in figure 6.1a. At ¢t = 0, the potential begins at 200 mV. The voltage is
stepped to 350 mV at ¢ = 10 seconds. At ¢ = 30 seconds, the voltage is stepped back
to 200 mV. This cycle repeats with a period of 40 seconds. Throughout this cycle,
we simultaneously monitor both the current (figure 6.1b) and the intensity of the
scattered x-rays at q, corresponding to the peak of figure 5.12. As expected, the
incommensurate scattering peak is present only for values of the potential within the
incommensurate phase. Note that the rise in the intensity of the scattered x-rays in
figure 6.1c is much slower than the corresponding current transient in figure 6.1b.
In contrast, the scattered intensity falls on a time scale similar to that of the current
transient.

The current transients describe the charge transfer at the electrode interface.
These are due to two contributing processes: the capacitive charging of the double-
layer, and the Faradaic charge transfer due to desorption/adsorption of ions.

Some previous chronoamperometric studies of closely related systems [79, 80] ex-
hibit distinct features in the current response that have been interpreted as evidence
of nucleation. These characteristic features are not present in our data. We suspect
that the geometry of the thin solution layer x-ray cell may be responsible for this
difference. The capacitive effect is greater for our larger samples. This strong signal

tends to mask other early features in the current response. Also, in our apparatus,
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Figure 6.1: (a) Applied potential steps. (b) Current transients. (c) Time depen-

dence of the integrated intensity of the (0.765 0 1.5) overlayer diffraction peak.
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as compared with hanging meniscus cells used in the other experiments, diffusion is
comparatively insignificant. First, diffusion from the “bulk” solution is not a con-
sideration for us, because the solution layer is so thin. Second, any diffusion that
does take place will occur in one dimension, rather than three. Above the planar
electrode face, the solution layer forms a very short cylinder. The ions are in close
proximity to the surface and conditions are probably relatively uniform across the
face, so diffusion is primarily along the surface normal.

After numerous attempts, we can definitely say that there are no features in
the current response at the same time as the x-ray response. So the measured
current response is ascribed to desorption/deposition into a disordered state (ac-
companied by charge transfer) which then gives rise to the nucleation and growth
of the equilibrium ordered phase. The rise in x-ray intensity corresponds to an
increased population in the incommensurate ordered phase. The desorption pro-
cess can be separated from the ordering process due to the widely disparate time
scales involved. Based on these data, we hypothesize a scenario wherein the abrupt
positive voltage step causes a expulsion of some of the adsorbed copper ions. The
remaining disordered ions gradually reorganize into a two-dimensional crystalline

state with a larger lattice constant, incommensurate with the platinum substrate.

6.3 Stochastically Nucleated Islands

Consider the nucleation of (ordered) islands from a disordered phase, as depicted in

figure 6.2. As usual, we define the Gibbs free energy of an island to be proportional
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Figure 6.2: Cartoon of a nucleation process.
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to the (electro)chemical potential and to the number of particles that comprise the
island. An island in contact with another phase will give rise to an excess free energy
term proportional to the surface area of contact. So the existence of an island with

N particles will lead to an excess of free energy

AG(N) = N(fiordered — Adisordered) + 75 (6.1)
where 1o qered a4 Hdisordered Tefer to the electrochemical potentials of the re-
spective phases. The surface free energy generated by the boundary between phases
is taken as the product of a constant coefficient v and the surface area. Defining
the overpotential as

n=AV — AV (6.2)
then the Gibbs free energy is

AG(N) = —Nzen+~S . (6.3)

This linear dependence of G(NN) upon 7 can arise from least three different scenarios.
Analogously to the example described by Schmickler [117], the desorption may be
accompanied by a shift in the electric potential. For instance, if the ordering process
involves the desorption of ions, then those ions would lose contact with the electrode
surface and no longer be at the applied potential AV. Another possibility involves a
change in the ionization state such that the ionic charge changes by ze. The lack of
any observed charge transfer across the electrode interface at times corresponding
to the ordering process (see section 6.3) argues against these scenarios. In the third
scenario, the ordering process is driven by the change in adsorbate density after

deposition. This is discussed in detail in section 6.11.
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Figure 6.3: Example of Gibbs free energy AG as a function of particle number N.



148

For an arbitrary (perhaps fractal) island of dimensionality d, then
S = aN@-D/d, (6.4)

The loss in AG from the n-dependent first term competes with the gain in AG
from the surface free energy. The loss scales with the interior volume of the island
(as N), and dominates for large N. The gain scales more weakly as the surface
area and dominates for small N. The consequence of this are functional forms for
AG exemplified in figure 6.3. There will be a critical N such that islands with
N < Nyt will shrink to vanishing and islands with N > N will grow arbitrarily

large. This critical island number can be determined by setting 0G/ON = 0,

d zen\ ®
Ny = ( ") (6.5)

d—1~a
and the energy barrier that must be overcome to nucleate an island of this size is

(@- 1" (o)
dd (zen)d—1

AC;'cri‘c = AC;'(]\/vcrit) = (66)

For later discussion, the most important result of this derivation is that AG. o
n'~4, which is just the d-dimensional generalization of an expression found in [117].

Assume that there is some stochastic attempt frequency k. to make islands,
only some of which are able to surmount the energy barrier. Also assume a Boltz-
mann distribution of energies in the attempt profile. Then the rate of islands suc-

cessfully nucleated is

kN = katt exp(—AGcrit/kT) (67)

and a characteristic time is

1 1 A cri _
TX — = exp ( G t) ~ exp(n'™) (6.8)
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6.4 Instantaneous vs. Progressive Nucleation

Let N(t) be the number of nuclei at time ¢. Following Schmickler, we assume

“first-order kinetics” as follows:
N(t) = Noo[l — exp(—knt)] (6.9)

This defines ky, the nucleation rate. There is no strong reason to believe that the
nucleation rate follows some sort of first-order restoring force as dN/dt = k(Ny—N),
upon which (6.9) depends. But this form allows an interpolation between two
limiting cases, often described in the literature. “Instantaneous” nucleation refers
to situations where the all possible nuclei have formed before the time of observation
of the system. This corresponds to kyt > 1 in equation (6.9) and yields N(¢) = Ny.
“Progressive nucleation” refers to the opposite limiting case, where the nucleation
process is at its early phase throughout the time of observation. This corresponds
to knt < 1 in equation (6.9) and yields a linearized N(t) = Nooknt.

Of course, these are only limiting cases. Although many experiments in the
literature attempt to distinguish between instantaneous and progressive nucleation,
we expect in general to find systems that exhibit both types of behavior, depending
upon the rate of nucleation ky (which may be controllable) and the time scale of
measurement.

In figure 6.4, these two cases are compared pictorially. For each column, the
time axis runs downwards. In the instantaneous case (left side), all of the nucleation
occurs before the first slide. As time advances, each island grows larger, but no new

ones are nucleated. In the progressive case (right side), some islands have already
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nucleated before the first slide. However, islands continue to be nucleated even as

their older siblings grow larger.

6.5 Characteristic Nucleation Time

Thus, we expect that as we quench deeper and deeper into the incommensurate
phase, the transition will occur ever more rapidly. To test this hypothesis, we
performed a series of voltage step measurements in which the applied potential
was stepped from 200 mV (within the commensurate phase) to varying potentials
within the incommensurate phase. As in the previous measurement, we measured
the scattered intensity at the incommensurate overlayer peak position as a function
of time. This corresponds to a series of experiments similar to the one shown in
figure 6.1, but varying the value of the more positive voltage. This is shown in
figure 6.5.

We characterized the resulting transition time by fitting the x-ray intensity pro-
files (which resemble figure 6.1c) to a trapezoidal functional form, as shown in
figure 6.6. While this model describes the data quite well, we ascribe no profound
significance to it. Rather, we use it simply to define a characteristic time, 7, which
should be inversely proportional to kx. The inset to figure 6.7 plots the resulting
7 values. The characteristic time scale describing the ordering of the bilayer ranges
varies from 50 seconds for shallow quenches to 0.7 seconds for deep ones. Figure 6.7
illustrates the exponential dependence of 7 on 1/7. This fits Eq. (6.6) with d = 2,

over the entire phase region. The linear slope demonstrates that the growing islands
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are intrinsically two-dimensional (rather than three-dimensional mounds or pits on
the surface) and that these islands are compact rather than fractal. The broad
range of 7 also implies that our two-dimensional cell geometry has not inhibited
the nucleation processes, but is only limited by the accessible range of voltage val-
ues. Furthermore, in all cases, 7 is longer than the current transient indicating that

capacitive charging effects are not dominating our results.

6.6 ¢t Data

Now we turn our attention to the development of order in the incommensurate struc-
ture formed after desorption. In order to understand the kinetics of this ordering
process, we need to access the full g-¢ dependent x-ray scattering. We repeat the
time-resolved measurement of figure 6.1 for a series of g-points linearly spaced along
the same q, direction as shown in figure 5.12. An example of such a measurement
is shown in figure 6.8. The first thing to note is that the peak remains centered at
a constant value of q, ruling out the possibility that the overlayer simply shifts its
periodicity in response to the change in potential.

From the discussion in section 5.5, the correlation length is obtained from the
width of the diffraction peak and is believed to be determined by the finite size
of growing islands of Cu-Cl. The diffraction peak narrows with time, indicating
that these islands are growing. The total coverage is proportional to the integrated
intensity.

Ideally, we would collect a q—t data set for each ¢ voltage transition. However,
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the single data set shown in figure 6.8 consumed 29 hours of synchrotron beam
time. With our constraints, it was not feasible to consider collecting many data sets
during that beam time allocation.

Because x-ray intensities obey Poisson counting statistics, for a measured signal
intensity N, the standard deviation is v/N. As seen in figure 6.8, the maximum
signal in 1300 counts/second, while the background is 1000 counts/second. Because

of this high background, we must count for long periods of time to resolve the signal.

6.7 Growth of Two-Dimensional Islands

Up to now, we have discussed the number of islands, but not the total volume
comprising this phase. As shown in section 6.5, the islands are intrinsically two-
dimensional. This is not intuitively pleasing, since the bilayer itself is two-dimensional.
Anticipating this result, in this section we will limit ourselves to the case of two-
dimensional islands.

Assume that each island grows by the incorporation of atoms into its boundary,
and that this is the rate-limiting step for island growth. Then, for an island of N
atoms and radius r, dN/dt = k,2nr. This defines k,, the rate constant for individual
island growth, which has units of [length x time]!. The area of the island is simply
A = N/p. Since (for a circular island) we have A = 7%, we have two expressions

for dA/dt:
dA

d
= = 27 (kg/p)r = omr . (6.10)

dt
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which implies that r(t) = (k,/p)t and the area is
A(t) = n(ky /p) (6.11)

Note that we are assuming that N,.; is much smaller than the mean island size.

Otherwise A should have a nonzero value at ¢t = 0.

6.8 Avrami Theorem

Following Avrami [14, 15, 16] consider a brief example of an area A with N circular
islands, each of area a. The extended coverage is 6.y = Na/A. Of course, if the
circles are placed randomly, then they will overlap somewhat and the true coverage
f will be less than the extended coverage f.;. While the true coverage is bounded
by the limits # = 0 (no coverage) and # = 1 (complete coverage), the extended
coverage can be infinite.

The probability that a particular point on the surface is not covered by a partic-
ular circle (1 —a/A). So the probability that it is not covered by any of N circles is
(1—a/A)N = (1—(Na/A)/N)". Assume that a < A. Then in the limit N — oo and
using limy (1 —z/N)™ = €72, this probability becomes exp(—Na/A) = exp(—0).

Finally, the probability that a point is covered (which is just the “coverage” 0) is
0 =1— exp(—Bext) (6.12)

Using this assumption, we can find the total surface coverage from the “extended”
coverage (that is, the coverage if there were no overlap of islands.) As ey — 00,

0 — 1.
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6.9 Extended Coverage

In this section, I combine results from sections 6.7 and 6.8 to derive some simple
expressions for the extended coverage.
In general,

N(?)

bt = 3 Alt =) (6.13)

where 7 is an index running over all the nuclei, and each island 7 is nucleated and

starts growing at ;. We can also change the sum from ¢ to ¢’ and write this as
¢
Bons = / A X (YAt — ') (6.14)
0

where the multiplicity X (¢') is simply dN(¢')/dt'. For our special cases, this is
2N,.0(t'") (instantaneous) and Ny ky (progressive). !
In the instantaneous limit, we have N, nuclei that have all nucleated at ¢t = 0,

so the extended coverage is

2
eir;itantaneous — 71_]\700 (ﬂ) t2 (615)
P

In the progressive limit, we have a constant dN(¢')/dt' that we can substitute into
(6.14) to obtain

. ko \”
agggresswe — gNookN (;‘7) t3 . (616)

From the previous form of N(¢) (6.9) we can compute the exact extended coverage

t ]
Bexs = TNookine (/)2 /0 di'e™ (¢ — t')? . (6.17)

IThe factor of two for the instantaneous case is required by the definition of the
0-function, which runs from —oo to cc.
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Solving the integral, this becomes

k 2
Oext = TNoo (—9> [k?vt2 — 2knt +2 — 27N (6.18)
knp

In the two limits, this correctly reduces to the progressive and instantaneous cases.

From the coverage alone, it is not possible to determine all of these parameters
individually. At best, in the intermediate cases, we can find the variables £y and
the ratio & = N (k,/p)?. In the progressive case, we cannot even determine these
two variables independently, but only their product. It is important to note that
ginstantaneous g ingensitive to ky, and so fits to (6.18) will also be insensitive to ky
when that limit is approached. This is reasonable, as all the nuclei have already

formed before the time scale of observation.

6.10 Analysis of ¢—t Data

To begin the analysis of the data in figure 6.8, we fit each time slice to a Lorentzian
line shape. A Lorentzian is the lowest order approximation to the structure factor
for any system with only short range positional order. Some representative time
slices and fits are shown by the thin lines in figure 6.9. From these fits, we extract
the half-width at half-maximum (A) and integrated intensity vs. time. These are
shown as circles in figure 6.10b. As expected for growing islands, A decreases with
time. At the same time, the integrated intensity (proportional to the coverage)
grows monotonically.

We can continue our analysis by incorporating the simple nucleation and growth

model considered previously. Instead of fitting each time-slice independently, we
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now want to fit the entire data set from figure 6.8 with a simple function of few
parameters. This intensity function I(q,t) we choose should satisfy the following
conditions.

First, I(q,t) has a Lorentzian line shape at any fixed time ¢. This Lorentzian

function is written

1 ()

TA(t) 1 + (qA—(tta)oz))2

L(Io(t), A(t), qo; q) = (6.19)

where I; is the integrated intensity, A is the half-width at half maximum, and qq
is the peak position in q. Second, the integrated intensities Iy(¢) are proportional

to the coverage 6(t). This coverage follows the Avrami form (6.12)
0 =1— exp(—Bext) (6.20)

where

k‘ 2
Bext (t) = TN (—") [k]?th — 2yt +2 — Qe_th] (6.21)
kNp

was given by (6.18). Third, the half-width at half-maxima A(¢) depend on the
mean island size. The individual length scale of each island 7 should be a function
only of the island growth rate &k, and elapsed time for growth ¢ — ¢;. However, the
average length scale will in general be a complicated function of several parameters.
Defining the average island size as (A) = /N, we expect that the typical correlation
length &y, will be proportional to (A)'/? and inversely proportional to A. So we

constrain A(t) to be
A(t) = /CnN(t)/0(1) (6.22)

with the proportionality constant Cy.
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Combining (6.19), (6.20), (6.21), and (6.22), the two-dimensional model function

is

I(q,t) = C1L(6(t), A(t), ao; @, t) + bo + b1(q — o) (6.23)
where C7 is just a proportionality constant relating coverage and x-ray intensity,
and by and b; parameterize the linear background.

We can now re-fit the entire data set (2 x 10* points) shown in figure 6.8 to the
single function (6.23). The best fit to this simple model produces x? = 1.04. The
intensities from the model and the data are compared in figure 6.11, and appear
to agree. However, it is easier to compare the contours of constant intensity that
are shown in figure 6.10a. The contours of constant intensity for the model and the
data agree very well. The generated integrated intensity Io(¢) and A(¢) functions are
plotted as solid lines in figure 6.10b. They agree with our previous results (plotted
as circles) where each time slice was fit independently. Returning to figure 6.9, we
can also compare the intensities from the two-dimensional model (thick lines) with
our previous results (thin lines) and the data itself (circles). Both of the lines fit
the data quite well; the minor discrepancies between them are due to a difference in
the form of the background function. In sum, these kinetic data are well-described
as the nucleation and growth of a two-dimensional film.

All of the fit parameters are shown in table 6.1; the physically interesting ones
are summarized in the top portion. The initial time %y, against which times ¢ are
measured, was allowed to float above 10 seconds (when the voltage was stepped),
but fit to 10 seconds. There seems to be no time delay before the nucleation pro-

cess begins. The growth parameter Ny (k,/p)? is a product of various parameters
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Table 6.1: Parameters obtained from fits to figure 6.8. The physically interesting

parameters are shown in the top portion, and the remainder are shown in the bottom

portion.
parameter variable | fit value units
initial time to 10.0 £0.32 s
growth parameter Noo(kg/p)? | 0.0404 + 0.0069 A2 g2
saturation island number | COyN. | 1.644 x 1075 +3.2x 1077 | A2
nucleation rate constant kn 1.33+£1.33 s !
peak intensity coefficient Cr 4.367 £+ 0.035 arbitrary
peak position q. —0.00117+3 x 107° A1
background constant bo 962.1 £ 0.4 counts s~!
background slope by 443 + 14 A counts s~*

from (6.21) that cannot be separated. The saturation island number N, is likewise

coupled with a proportionality factor that cannot be isolated. From the uncertain-

ties shown in the table, all of the fit parameters are well-determined except for ky,

to which the fit is relatively insensitive. This is an indication that either the data

at early times (when there is very low signal) is insufficient to fix this parameter, or

that the observations are in the instantaneous limit (6.15), where 6 does not depend

on ky.

We have attempted to test the assumption of first-order nucleation kinetics.
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Rearranging (6.9), we have

vt () 02

and noting from (6.22) that N o< A%, we obtain

A?(00)f(c0) )
A2(00)0(00) — A2(1)8()

kyt =In ( (6.25)

where A(t = 00) and 0(t = oo) are the saturation values. If the first-order assump-
tion given by (6.9) is correct, then a plot of the right-hand side of (6.25) vs. ¢ should
be linear and provide a measure of ky. This plot is shown in figure 6.12. Unfortu-
nately, the noise in our data makes such a determination inconclusive. Better data

may be able to prove or disprove this hypothesis.

6.11 Density-Driven Nucleation and Growth Ki-
netics

Previously, we posited a voltage-dependent Gibbs free energy (6.6). For the case of
two-dimensional circular clusters,

2 2

(va)* _ o'm
AG iy = = 6.26
’ dzen  pzen ( )

where we have solved (6.4) for the geometrical constant a = 24/7/p. One way to
obtain this form is to assume (as Schmickler [117] does) the deposition of metal ions
from solution Ms+ol directly into a crystalline phase on the surface Mcry, as shown

by the right side of figure 6.13.
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In this section, an alternative route to obtaining (6.26) is demonstrated. (This
treatment was initially developed by Joel Brock [48].) Consider a model in which
adsorption (described by a Langmuir isotherm) is driven by the change in potential.
As the potential is varied the coverage varies, and the increasing coverage then drives
a conventional phase transition. This is shown by the left side of figure 6.13. This
density-driven phase transition may occur well before the adsorption transition is
completed, in which case the system may still be in the linear region of the Langmuir

isotherm (2.59).

Adsorption/Desorption
Driven by
Change in Potential

Adsorption/Desorption ’,
Driven by
Change in Potential

Phase Transformation
Driven by
Change in Surface Density

Figure 6.13: Schematic of two possible deposition processes. The solid lines rep-
resent mass flow (particle transfer) and dotted lines represent current flow (charge

transfer).
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Upon the formation of a circular cluster with radius r, the Gibbs free energy of
the system changes by AG. AG has contributions from the difference of chemical
potentials of the lattice phase 1,; and disordered adsorbed phase 44 and from the
surface energy.

AG = 77 p (Mgt — Haa) + 27T (6.27)

where p is the atom/area density in the lattice phase (section 6.7), and 7 is the
energy per unit length of the interface (section 6.3). Setting OAG/0r = 0 we obtain

the critical radius 7.,

v

—p(uad = ) (6.28)

Te =

For simplicity, treat the adsorbed phase as an ideal gas. Define P, to be the
pressure at which a circular nucleus of radius r is in equilibrium with the gas phase.

At Py, ttag = Miat- At Pry lheg — Mia = %. From thermodynamics we have

1
dg = —sdT + ;dP (6.29)

where g and s are the Gibbs energy and entropy per particle. In equilibrium,

(dg)aqd = (dg)iar SO at constant temperature we obtain,

(1/pad — 1/p) dP = —# dr (6.30)

Now assume that p,q < p and use the ideal gas law P = p,qkT.

dP y
T = 31
k iz pe dr (6.31)

Integrating from oo to r. (Px to Py,),

P, Y
Thh{=%)=— .32
k n(Poo) (6.32)
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and using this value of 7. in (6.27),

72

AG, = .
Ge kTpln (P,,/Px)

(6.33)

Using the ideal gas relation again, P = I'kT, where I' is the surface excess concen-

tration (section 2.8) of the adsorbed phase. Then,

P T,
P exp (—zen/kT) (6.34)

where the latter equality assumes a linearized isotherm (2.59). Substituting into (6.33),

2
AG, = 1 (6.35)
pzer)

which duplicates (6.26) exactly. Therefore, in this limit of low coverages, the energy
barrier for a density-driven phase transition and the potential-driven phase transi-
tions are identical. The primary difference is that the current transfer precedes the
nucleation and growth in a density-driven transition, while the two processes occur
in tandem in a potential-driven phase transition. The wide separation in time scales
between the current transient and the onset of ordering (section 6.2 and figure 6.1)

indicate a density-driven transition.

6.12 Step Chronoamperometry of an Ideal Sys-
tem

In section 2.5.2, we considered the electrode to be a perfect sink for ions: any

ions that arrive at z = 0 are deposited onto the electrode irreversibly. This is the
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meaning of the boundary condition (2.45)
c(z=0"t>0)=0 (6.36)

which is reasonable for bulk diffusion where the deposition kinetics are very fast,
and so the rate-limiting step is the diffusion of ions to the electrode surface.
However, this is not a reasonable approximation for UPD. Firstly, the coverage
6 will not exceed unity. Secondly, the kinetics of deposition can not be neglected.
As in section 5.2.1, a simple model is one with a Langmuir isotherm. We will make

a further assumption, that we can linearize the Langmuir isotherm, as in (2.59),

AGO)

0%0exp<— T

(6.37)

where we are now keeping only the linear term. This will be adequate for sufficiently
low coverages, and has the advantage of simplicity. In the particular Cu/Cl/Pt(111)
UPD system studied in this dissertation, a phase transition occurs once the coverage
reaches a certain point. So the behavior will deviate from the Langmuir result in
that case, anyway.

The treatment follows the derivation of the Cottrell equation (section 2.5.2). We

arrive at the same result as (2.48),
c(z,s5) = A(s) exp [(S/D)I/QZ] + B(s) exp [—(S/D)lﬁz} + Coo/$ (6.38)

where A(s) = 0 because ¢(z — 00,t) = ¢x. The boundary condition at z = 0 is
not ¢(z = 0%,¢ > 0) = 0 as for the Cottrell equation. To complete the solution, we
need to find the appropriate boundary condition. (The following mathematics are

borrowed from [48].)
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The surface excess is

¢ ¢
v =[ ap Oelz, 1) (6.39)
0 0z |,_,
and its Laplace transform is
D\ 0c(z, s)
I'(s) ={— . 6.40
(s) ( s ) 0z |, (6.40)
Using (6.37), we can relate I" to the concentration,
AG
['(t) =Tgq¢0 = Fgqt (2 = 0,t) exp (— kTO) . (6.41)

Defining b(t) = I'(t)/c(t) we can substitute (6.38) into (6.41) and Laplace transform
to obtain

I(s) = b [B(s) + %’"] . (6.42)

Similarly, substituting (6.38) into (6.40) we obtain

D 1/2
T'(s) = — <§> B(s) . (6.43)
Now we can equate (6.42) and (6.43) and solve for B(s):
Bls)= —— o (6.44)

bs+ (Ds)?
We now substitute (6.44) into our previous solution (6.38), and obtain the Laplace
transform of ¢(z, t).

b

c(z,8) = ——————
(2) bs+ (Ds)'/?

exp [~ (s/D)"? 2] + %’" . (6.45)

We can now obtain the current density by substituting (6.45) into Fick’s Law (2.35):

] G ] = sy 69

j(s) =neD %

z=0
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The last step is to perform the inverse Laplace transform on (6.46). The following

transform [55]

1 o2t 1
L lﬁ — ae® erfc (a\/i)] = Jita (6.47)
completes the solution:
j(t) = neceo VD l\/% — g exp (%) erfc <%>] . (6.48)

In the limit that adsorption kinetics play no role (I'gyy — o0, or b — 00),
then the second term in (6.48) vanishes and we recover the Cottrell current (2.53).

Equation (6.48) is plotted in figure 6.14 for various values of b.

6.13 Discussion

The basic scenario is that the applied potential step drives copper off of the surface
and the Cu-Cl grains then nucleate and grow. Upon reversal of the potential step,
the Cu—Cl bilayer is destroyed as the commensurate copper layer is formed.

From the exponential dependence of the time scale on voltage (figure 6.7), it is
now clear why Cu/Cl/Pt(111) cyclic voltammetry (figure 5.2) always shows hystere-
sis, even for extremely slow sweep rates. Incorporating the nucleation and growth
model into the cyclic voltammetry formula should lead to quantitative predictions
for the degree of hysteresis as a function of sweep rate. However, it is unlikely
that cyclic voltammetry alone would provide sufficient evidence for nucleation and
growth; there are many processes that can affect electrode kinetics and cause similar
responses. Instead, electrochemists typically study nucleation with chronoamper-

ometry [79, 80].
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Current density from linearized Langmuir function
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Figure 6.14: Current density at the electrode surface from (6.48) with b6 = 0.0001
(dotted), b = 0.001 (dot-dashed), and b = 0.01 (dashed). Note that b = 0.01
is nearly indistinguishable from the Cottrell result (solid). I have chosen D =

9 x 107%¢cm? /s, which is typical of aqueous solutions.
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We have carefully considered possible effects of the thin solution layer on the
ordering kinetics after a potential step. If the thin-layer were an inhibiting factor,
we would expect to find an upper limit to the rate at which the nucleation process
could take place. This is not apparent in our data. As shown in figure 6.7, the
fastest observable time scale is limited by the constraint that the voltage quench
not reach into phase A, beyond the incommensurate phase B. Furthermore, there
is no evidence of any roll-over in the voltage dependence of the ordering time con-
stant. Finally, the ordering time constant is always longer than the electronic time
constant.

In standard deposition-nucleation problems [117], the voltage dependence in the
Gibbs free energy (6.3) is a result of the differing electric potentials in the bulk
solution and at the surface of the electrode. In our problem, the incommensurate
and commensurate phases are both near the electrode surface. The charge transfer
from the platinum surface precedes the ordering and may be voltage dependent.
In particular, how much of the charge is shared between the Cu and Cl atoms is
unknown. It has been shown that the ionization state does not jump directly from
Cu® to Cu®* [78, 5]. Another possibility is that the Cu or Cl ions change their
positions (especially along the z direction) as a precursor to desorption out of the
ordered state. Expanded or compressed layers, which are voltage-controlled, have
been observed in several UPD systems.

To resolve these underlying issues, more data on this transition must be ac-
quired. Time-resolved in situ reflectivity, both specular and non-specular, would

help to clarify the positions and occupancies of the Cu and Cl layers throughout



177

the desorption process. X-ray standing waves, which have been applied to UPD
[4, 35, 3], are particularly sensitive to the positions of ordered layers above the elec-
trode surface. It may also be helpful to take data on a related UPD process: Cu
on Au(111) in HySO4 [133]. This one of the most studied systems and has been
extremely well-characterized. The gold surface is much easier to work with and does
not oxidize as readily as platinum, simplifying the sample transfer (section 4.3.7)
and subsequent data acquisition.

Scattering from the commensurate overlayer occurs at the same H, K positions
as the Pt(111) crystal truncation rods and will be difficult to observe. Thus, exper-
imental information on the reverse reaction, formation of the commensurate layer,
will be difficult to obtain.

Finally, a comparison of the electrochemical current transients in the hanging-
meniscus cell and the x-ray cell is necessary. Hanging-meniscus data show distinct
nucleation bumps that are absent in the x-ray cell. While capacitive charging effects
(which are enhanced in the x-ray cell) may mask some features, a systematic study

of each would resolve the discrepancy and clarify the voltage dependence in (6.3).



Chapter 7

Conclusions

In conclusion, we have studied a system wherein desorption (rather than deposi-
tion) is followed by ordering. The charge-transfer process is much faster than the
development of long-range order. The x-ray data are well described by a nucleation
and growth model with only a few parameters. The potential-step experiments
demonstrate that the rate of ordering agrees well with nucleation models over two
decades in time, and is not limited by the thin-layer geometry.

Electrochemistry is a good model system for studying growth phenomena in gen-
eral. In comparison with in vacuo systems, it has the advantage that heteroepitaxial
material can be removed to recover the initial substrate. So the same deposition
(or desorption) processes can be studied repeatedly, under identical conditions, and
without having to change samples. Also, electrochemical systems can be simpler,
and components are less expensive, than for ultra-high vacuum systems. This is

more practical for traveling to distant locations (such as synchrotrons).
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Despite the “conventional wisdom”, it is possible to perform good kinetic x-ray
measurements in a thin-layer electrochemical cell. The limiting rates are not specif-
ically constrained by the cell itself. Voltammograms of ideal quality are a necessary
condition to detecting the x-ray signal. Crystal quality is a determining factor in
both voltammetry and the bilayer x-ray scattering. To this end, we developed a
polishing / annealing procedure and apparatus that have now propagated to other
research groups in Clark Hall.

We have simultaneously measured in situ x-ray scattering from the adsorbed
incommensurate bilayer and current transients. This allows us to directly address
the kinetics of the nonequilibrium desorption/ordering process. Upon a positive
voltage step, there is Cu desorption, and the commensurate structure transforms
into an incommensurate structure, with a larger in-plane lattice constant. During
this process, we see a current transient and the emergence of an x-ray scattering
peak. The current transients have two components: the capacitive charging of the
double-layer, and the Faradaic charge transfer due to desorption/adsorption of ions.
We have not yet been able to separate the two. The x-ray scattering intensity indi-
cates the ordering of the incommensurate bilayer. The rise in integrated intensity is
proportional to the increasing number density in the ordered phase. The narrowing
of the peak corresponds to a increasing correlation length, which implies growing
phase domains.

Using a nucleation and growth model, we can fit the entire gt data set (2 x 10*
points) to a function of a few variables. Extending these arguments, we demonstrate

that the ordering time scales with voltage over the entire range, in quantitative
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agreement with the nucleation and growth of two-dimensional islands.

All we know about the desorption process is contained in the current transient
data. One could better determine when the copper ions leave the surface by per-
forming a similar kinetic x-ray experiment but monitoring the specular reflectivity
instead of the intensity of the Cu-Cl order parameter. The information gained
would be very interesting; however, the experiment would be a major undertaking,
requiring a different cell design and many months of experimenting. Furthermore,
the results would not affect the conclusions of the current experiment. Rather, they
might shed some light on what happens before the nucleation and growth process
begins.

Further studies could explore the relationship between geometry-dependent dif-
fusion processes, charge transfer at the interface, and nucleation mechanisms. Some
future experimental directions have already been detailed in section 4.6. Additional
chronoamperometric measurements in a cell where the thickness of the solution layer
could be systematically varied would allow one to investigate whether the desorp-
tion process is diffusion-limited in one limit and reaction-rate-limited in the other.
These measurements are also well beyond the scope of the current investigation, re-
quiring new experimental cells and, again, the results would not affect our current

conclusions.



Appendix A

Gaussian Distributions

This appendix summarizes some relevant results on Gaussian distributions for the
reader who may not be familiar with them.

Consider the cumulant expansion [70] for (e®), where z is considered small.
Here, we will only expand to second order, though the extension to higher orders is

straightforward. To derive the cumulant expansion, begin with
In(l1+z)=1z-2*/2+0(z%) (A1)

for small x and expand the exponential

Inserting (A.2) into (A.1) we obtain

In () = (&) + (a)/2 = (2)?/2+ O(?) . (A3
Thus
(@) = exp { () + 3 [(0%) - 7] + 0} (A4)
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A “Gaussian random variable” is a random variable with a Gaussian distribution.
For a Gaussian random variable =, all of the terms of order z* and higher are

identically zero. This follows from considering a Gaussian distribution of the form

p(z) = % exp [—a?(z — 20)?] (A.5)

which is normalized such that [2°dz p(z) = 1. By integrating, it is easy to show

that
() = /_;OO dz p(z) x =z, (A.6)
@ = [ :° dz p(x) 2% = 22 + %“2 | (A7)

Now, the expectation value of e* is

(e*) = /;oo dx p(z) e* = /:o dx % exp [—a?(x — ) + 7] . (A.8)

The easiest way to solve this is by factoring judiciously to “complete the square” in

the exponential:

(") = /_J:o dx % exp [—o?(x — z9)? + 7] (A.9)

+oo 1
= 6z061/(4a2)/ dx % exp |—a?(x — 20)* + (z — z¢) — —] (A.10)

o 40?2

+00 1 2
= ¢%0el/(4e?) /_oo dx %exp - [a(m — o) — %] (A.11)
— @/2(@)—@?) (A.12)

For a Gaussian distribution, all of the terms of the cumulant expansion beyond
second order are identically zero. For this reason, the assumption of a Gaussian
distribution is equivalent to the assumption that z is sufficiently small (so that

terms beyond second order can be neglected).
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I mention one more useful relation, used in section 3.10. Assuming that the

Gaussian approximation is valid and (A + B) = 0,

(AeB) = (A+F) — (HAB? _ a%+24B45?) (A.13)

follows directly from (A.4).



Appendix B

Diffusion Equation

This treatment expands upon the three-dimensional treatment by McQuarrie [99]

and extends it to arbitrary dimensionality. McQuarrie actually suggests two ways

to give the result (B.14); I am using the first.

The diffusion equation for G is

0G(r, 1) 9
= DV*G(r,t
at (r’ )
and we take the initial condition
G(r,0) =4(r) .

This can be solved most easily by taking a Fourier transform

aG(qa t) 2
= —-Dg¢g°G(q.t
5 q"G(q,t)
and the initial condition becomes
G(q,0)=1.
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(B.1)

(B.2)
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The solution of this is

G(q,t) = exp(—¢°Dt) . (B.5)

The Fourier transform approach is useful in another way. We can differentiate the

Fourier transform expression (3.21) twice to find

0* 0* -
_— = _— _Zq.r
6q2G(q’ t) o /dr e "G, t) (B.6)
0? ,
_ —iqr cos 8
= 32 /dr e G(r,t) (B.7)
= —/dr r?cos® § e~ es0G(x, ) | (B.8)
Take the ¢ = 0 case,
0*G(q,1) 2 .2
=— : B.
5|, /dr r“cos” 0 G(r,t) (B.9)

The right-hand side of this equation is just —(r?cos®#), which can be separated
into radial and angular parts —(r?)(cos?#). The latter factor (cos?#) is just the
average value of (z%/r?) over a d-dimensional spherical shell. Since the equation of
that shell is

PP+l + =0 (B.10)

and taking the average value,

NG R

then the average value of each component (they are all equivalent) is just 1/d. Then

we have (cos?#) = 1/d and

1

- _ - 2 —
= d/drr G(r,t)

q=0

0*G(q,t)
0q?

1

d(r2> : (B.12)
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Now, from (B.5) we know that

9°G(q, 1)

= =2Dt B.13
0q¢?

q=0

so we can equate these to find the important result
(r*(t)) = 2dDt . (B.14)

where d is the spatial dimensionality. This proves (2.37).
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